8.設x,y滿足約束條件$\left\{\begin{array}{l}2x+y-7≤0\\ x-y-2≤0\\ x-2≥0\end{array}\right.$,則$\frac{y}{x}$的最大值為(  )
A.$\frac{3}{2}$B.2C.$\frac{1}{3}$D.0

分析 首先畫出可行域,根據(jù)事情是區(qū)域內的點與原點連接的直線的斜率的最大值,求之即可.

解答 解:由已知得到可行域如圖:則$\frac{y}{x}$表示區(qū)域內的點與原點連接的直線的斜率,所以與C連接的直線斜率最大,且C(2,3),所以$\frac{y}{x}$的最大值為$\frac{3}{2}$;
故選:A.

點評 本題考查了簡單線性規(guī)劃問題;正確畫出可行域是解答的前提,利用目標函數(shù)的幾何意義求最值是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.甲、乙兩地相距400千米,一汽車從甲地勻速行駛到乙地,速度不得超過100千米/時.已知該汽車每小時的運輸成本t(元)關于速度x(千米/時)的函數(shù)關系式是t=$\frac{1}{19200}$x4-$\frac{1}{160}$x3+15x.
(1)當汽車以60千米/時的速度勻速行駛時,全程運輸成本為多少元?
(2)為使全程運輸成本最少,汽車應以多少速度行駛?并求出此時運輸成本的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知點P是△ABC所在平面外一點,點O是點P在平面ABC上的射影,在下列條件下:P到△ABC三個頂點距離相等;P到△ABC三邊距離相等;AP、BP、CP兩兩互相垂直,點O分別是△ABC的(  )
A.垂心,外心,內心B.外心,內心,垂心C.內心,外心,垂心D.內心,垂心,外心

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.用max{a,b}表示a,b兩個數(shù)中的較大值,設f(x)=max{2x-1,$\frac{1}{x}$}(x>0),則f(x)的最小值為( 。
A.-1B.1C.0D.不存在

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.一條直線上有三點A,B,C,點C在點A與點B之間,P是此直線外一點,設∠BPC=β,∠APC=α,則$\frac{sin(α+β)}{PC}$=( 。
A.$\frac{sinβ}{PA}$-$\frac{sinβ}{PB}$B.$\frac{sinα}{PB}$-$\frac{sinβ}{PA}$C.$\frac{sinα}{PA}$+$\frac{sinβ}{PB}$D.$\frac{sinα}{PB}$+$\frac{sinβ}{PA}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.不等式0<|2x-1|<5 的解集為( 。
A.{x|-2<x<3}B.{x|-2<x<2}C.{x|x<-2或x>3}D.{x|-2<x<3且x≠$\frac{1}{2}$}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若a,b∈[0,1],則不等式a2+b2≤1成立的概率為( 。
A.$\frac{π}{16}$B.$\frac{π}{12}$C.$\frac{π}{8}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)y=($\frac{1}{2}$)${\;}^{{x}^{2}-2}$的遞增區(qū)間是( 。
A.(-∞,0]B.[0,+∞)C.(-∞,$\sqrt{2}$]D.[$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2^x},x≤2\\ x-1,x>2\end{array}\right.$,則f(f(3))等于( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案