(本小題滿分14分)
已知橢圓
的離心率為
,點
,
為
上兩點,斜率為
的直線與橢圓
交于點
,
(
,
在直線
兩側(cè)).
(I)求四邊形
面積的最大值;
(II)設直線
,
的斜率為
,試判斷
是否為定值.若是,求出這個定值;若不是,說明理由.
(I)
,設橢圓
,將點
代入橢圓,得
,
所以橢圓
的方程為
…………2分
設直線的方程為
,
,得
則
,
…………4分
又
=
顯然當
時,
=
…………6分
(II)設直線
、
的方程分別為
(5)
(
)
將(5)代入(4)得:
則
…………8分
同理:
…………10分
化簡得:
即
為定值。 …………12分
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
已知橢圓
的兩焦點分別為
,且橢圓上的點到
的最小距離為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過點
作直線
交橢圓
于
兩點,設線段
的中垂線交
軸于
,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
過橢圓
的左焦點
作
軸的垂線交橢圓于點
,
為右焦點,若
,則橢圓的離心率為__________________ .
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,過點
作拋物線
的切線
,切點A在第二象限.
(1)求切點A的縱坐標;
(2)若離心率為
的橢圓
恰好經(jīng)過切點A,設切線
交橢圓的另一點為B,記切線
,OA,OB的斜率分別為
,求橢圓方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)已知過點
的直線
與橢圓
交于不同的兩點
、
,點
是弦
的中點.
(Ⅰ)若
,求點
的軌跡方程;
(Ⅱ)求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓E的中心在坐標原點
,焦點在
軸上,離心率為
,且橢圓E上一點到兩個焦點距離之和為4;
,
是過點
且相互垂直的兩條直線,
交橢圓E于
,
兩點,
交橢圓E于
,
兩點,
,
的中點分別為
,
.
(1)求橢圓E的標準方程;
(2)求直線
的斜率
的取值范圍;
(3)求證直線
與直線
的斜率乘積為定值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(滿分15分)已知橢圓
(
a>
b>0)的離心率
,過點
A(0,-
b)和
B(
a,0)的直線與原點的距離為
(1)求橢圓的方程
(2)已知定點
E(-1,0),若直線
y=
kx+2(
k≠0)與橢圓交于
C D兩點 問:是否存在
k的值,使以
CD為直徑的圓過
E點?請說明理由
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知曲線
的極坐標方程是ρ=2,以極點為原點,極軸為
軸的正半軸建立平面直角坐標系
(1) 寫出曲線
的直角坐標方程;
(2)若把
上各點的坐標經(jīng)過伸縮變換
后得到曲線
,求曲線
上任意一點到兩坐標軸距離之積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若橢圓
的左、右焦點分別為
,線段
被拋物線
的焦點F分成5:3兩段,則橢圓的離心率為 ( )
查看答案和解析>>