如圖,橢圓的左右焦點(diǎn)分別為是橢圓右準(zhǔn)線上的兩個(gè)動(dòng)點(diǎn),且=0.
(1)設(shè)圓是以為直徑的圓,試判斷原點(diǎn)與圓的位置關(guān)系
(2)設(shè)橢圓的離心率為,的最小值為,求橢圓的方程
(1)點(diǎn)在圓外部(2)
(1)設(shè)橢圓的焦距為
則其右準(zhǔn)線方成為
設(shè)

因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133515079575.gif" style="vertical-align:middle;" />,所以
,所以MON為銳角  
點(diǎn)在圓外部 -------------------------5分
(2)∵橢圓的離心率為,∴
于是,且
          ----------------------------------10分
當(dāng)且僅當(dāng)時(shí)取等號(hào)
所以,于是
故所求的橢圓方程為            ----------————————12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),一個(gè)焦點(diǎn)是,且兩條準(zhǔn)線間的距離為
(I)求橢圓的方程;
(II)若存在過點(diǎn)A(1,0)的直線,使點(diǎn)F關(guān)于直線的對(duì)稱點(diǎn)在橢圓上,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的方程為,點(diǎn)的坐標(biāo)滿足過點(diǎn)的直線與橢圓交于、兩點(diǎn),點(diǎn)為線段的中點(diǎn),求:

(1)點(diǎn)的軌跡方程;
(2)點(diǎn)的軌跡與坐標(biāo)軸的交點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖橢圓 (a>b>0)的上頂點(diǎn)為A,左頂點(diǎn)為B, F為右焦點(diǎn), 過F作平行與AB的直線交橢圓于C、D兩點(diǎn). 作平行四邊形OCED, E恰在橢圓上.
(1)求橢圓的離心率;
(2)若平行四邊形OCED的面積為, 求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知平面截圓柱體,截口是一條封閉曲線,且截面與底面所成的
角為30°,此曲線是          ,它的離心率為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)A,B分別是直線上的兩個(gè)動(dòng)點(diǎn),并且,動(dòng)點(diǎn)P滿足.記動(dòng)點(diǎn)P的軌跡為C.
(I)求軌跡C的方程;
(II)若點(diǎn)D的坐標(biāo)為(0,16),M、N是曲線C上的兩個(gè)動(dòng)點(diǎn),且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:=1()的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于、兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,求△面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果方程表示焦點(diǎn)在軸上的橢圓,則的取值范圍是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓4x2+4by2=3與直線x+y-1=0相交于不同的兩點(diǎn),則實(shí)數(shù)b的范圍是___________.

查看答案和解析>>

同步練習(xí)冊(cè)答案