如果方程表示焦點在軸上的橢圓,則的取值范圍是(     )
A.B.C.D.
D
方程表示焦點在軸上的橢圓,需滿足,解之可得。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓的左、右焦點分別為、,其中也是拋物線的焦點,在第一象限的交點,且
(1)求橢圓的方程;
(2)已知菱形的頂點在橢圓上,頂點在直線上,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓的左右焦點分別為,是橢圓右準線上的兩個動點,且=0.
(1)設圓是以為直徑的圓,試判斷原點與圓的位置關(guān)系
(2)設橢圓的離心率為,的最小值為,求橢圓的方程

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率,為過點和上頂點的直線,下頂點的距離為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設橢圓的動弦, 若為線段的中點,線段的中垂線和x軸交點為,試求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的兩焦點與短軸的一個端點的連線構(gòu)成等腰直角三角形,直線是拋物線的一條切線.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的動直線L交橢圓CA、B兩點.問:是否存在一個定點T,使得以AB為直徑的圓恒過點T ? 若存在,求點T坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓,
(1)求斜率為2的平行弦的中點軌跡方程。
(2)過A(2,1)的直線L與橢圓相交,求L被截得的弦的中點軌跡方程;
(3)過點P(0.5,0.5)且被P點平分的弦所在直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知動點到兩個定點的距離的和等于4.
(1)求動點所在的曲線的方程;
(2)若點在曲線上,且,試求面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓+=1上一點P到兩焦點距離之積為m,則m最大時求P點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若直線y=x+t與橢圓+y2=1相交于A、B兩點,則|AB|的最大值是(   )
A.2                B.            C.          D.

查看答案和解析>>

同步練習冊答案