A. | (-∞,2) | B. | (-∞,2] | C. | (2,+∞) | D. | [2,+∞) |
分析 運(yùn)用參數(shù)分離的方法,分別討論當(dāng)x≤1時(shí),當(dāng)x>1時(shí),函數(shù)f(x)-ex的單調(diào)性和最大值的求法,注意運(yùn)用導(dǎo)數(shù),最后求交集即可.
解答 解:當(dāng)x≤1時(shí),f(x)-ex-m≤0即為m≥x+3-ex,
可令g(x)=x+3-ex,則g′(x)=1-ex,當(dāng)0<x<1時(shí),g′(x)<0,g(x)遞減;
當(dāng)x<0時(shí),g′(x)>0,g(x)遞增.g(x)在x=0處取得極大值,也為最大值,且為2,
則有m≥2 ①
當(dāng)x>1時(shí),f(x)-ex-m≤0即為m≥-x2+2x+3-ex,
可令h(x)=-x2+2x+3-ex,h′(x)=-2x+2-ex,由x>1,則h′(x)<0,
即有h(x)在(1,+∞)遞減,則有h(x)<h(1)=4-e,
則有m≥4-e ②
由①②可得,m≥2成立.
故選:D.
點(diǎn)評(píng) 本題考查不等式恒成立問(wèn)題注意轉(zhuǎn)化為求函數(shù)的最值問(wèn)題,同時(shí)考查運(yùn)用導(dǎo)數(shù)判斷單調(diào)性,求最值的方法,屬于中檔題和易錯(cuò)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=sinx | B. | y=-|x+1| | C. | y=ln$\frac{1-x}{1+x}$ | D. | y=$\frac{1}{2}$(ex+e-x) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{5}{16}$ | C. | $\frac{3}{8}$ | D. | $\frac{7}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com