12.以下莖葉圖記錄了甲、乙兩組各六名學(xué)生在一次數(shù)學(xué)測(cè)試中的成績(jī)(單位:分),規(guī)定85分以上(含85分)為優(yōu)秀,現(xiàn)分別從甲、乙兩組中隨機(jī)選取一名同學(xué)的數(shù)學(xué)成績(jī),則兩人成績(jī)都為優(yōu)秀的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{1}{4}$

分析 根據(jù)莖葉圖中的數(shù)據(jù),利用分步相乘原理,即可求出對(duì)應(yīng)的概率值.

解答 解:根據(jù)莖葉圖中的數(shù)據(jù)知,甲組85分以上(含85分)有3人,乙組有4人;
現(xiàn)分別從甲、乙兩組中隨機(jī)選取一名同學(xué)的成績(jī),則兩人成績(jī)都為優(yōu)秀的概率是
P=$\frac{3}{6}$×$\frac{4}{6}$=$\frac{1}{3}$.
故選:B.

點(diǎn)評(píng) 本題考查了古典概型的概率計(jì)算問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x≥1,}&{\;}\\{x+y≤4,}&{\;}\\{x+by-1≤0}&{\;}\end{array}\right.$且目標(biāo)函數(shù)z=x+2y最小值為1,則實(shí)數(shù)b的取值范圍是(  )
A.(-∞,0)B.(-∞,-$\frac{1}{2}$]C.[-$\frac{1}{2}$,0)D.(-∞,0)∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.2016年9月20日在烏魯木齊隆重開幕的第五屆中國-亞歐博覽會(huì),其展覽規(guī)模為歷屆之最.按照日程安排,22日至25日為公眾開放日.某農(nóng)產(chǎn)品經(jīng)銷商決定在公眾開放日開始每天以50元購進(jìn)農(nóng)產(chǎn)品若干件,以80元一件銷售;若供大于求,剩余農(nóng)產(chǎn)品當(dāng)天以40元一件全部退回;若供不應(yīng)求,則立即從其他地方以60元一件調(diào)劑.
(1)若農(nóng)產(chǎn)品經(jīng)銷商一天購進(jìn)農(nóng)產(chǎn)品5件,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:件,n∈N*)的函數(shù)解析式;
(2)農(nóng)產(chǎn)品經(jīng)銷商記錄了30天農(nóng)產(chǎn)品的日需求量n(單位:件)整理得表:
日需求量34567
頻數(shù)231564
若農(nóng)產(chǎn)品經(jīng)銷商一天購進(jìn)5件農(nóng)產(chǎn)品,以30天記錄的各需求量發(fā)生的頻率作為概率,X表示當(dāng)天的利潤(單位:元),求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知變量x,y滿足約束條件$\left\{\begin{array}{l}x≤y\\ y≤2x\\ x+y≤6\end{array}\right.$則z=x-2y的取值范圍是[-6,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知(1+x)n的展開式中第5項(xiàng)與第7項(xiàng)的二項(xiàng)式系數(shù)相等,則奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為( 。
A.29B.210C.211D.212

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.(x2-4)(x+$\frac{1}{x}$)9的展開式中x3的系數(shù)為-210.(用數(shù)字填寫答案)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知全集U=Z,A={x∈Z|x2-x-2≥0},B={-1,0,1,2},則(∁UA)∩B=( 。
A.{-1,2}B.{-1,0}C.{0,1}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.各項(xiàng)均為非負(fù)整數(shù)的數(shù)列{an}同時(shí)滿足下列條件:
①a1=m(m∈N*);②an≤n-1(n≥2);③n是a1+a2+…+an的因數(shù)(n≥1).
(Ⅰ)當(dāng)m=5時(shí),寫出數(shù)列{an}的前五項(xiàng);
(Ⅱ)若數(shù)列{an}的前三項(xiàng)互不相等,且n≥3時(shí),an為常數(shù),求m的值;
(Ⅲ)求證:對(duì)任意正整數(shù)m,存在正整數(shù)M,使得n≥M時(shí),an為常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)是定義域R上的奇函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增,若$\frac{|f(lnx)-f(ln\frac{1}{x})|}{2}$<f(1),則x的取值范圍為( 。
A.(0,$\frac{1}{e}$)B.(0,e)C.($\frac{1}{e}$,e)D.(e,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案