已知a>b≥2,有下列不等式:①b2>3b-a;②1+
4
ab
>2(
1
a
+
1
b
)
;③ab>a+b;④loga3>logb3;其中正確的是( 。
A、②④B、①②C、③④D、①③
分析:用作差法比較可得①③正確,通過(guò)給變量取特殊值檢驗(yàn)可得②④不正確.
解答:解:∵a>b≥2,
∴b2 -3b+a=(a-b)+b(b-2)>0+0=0,故①正確.
1+
4
ab
>2(
1
a
+
1
b
)
 不正確,例如 a=10,b=2時(shí),左邊為
6
5
,右邊也為
6
5
,故②不正確.
ab-(a+b )=
ab-2a+ab-2b
2
=
a(b-2)+b(a-2)
2
0+0
2
=0,故③正確.
④不正確,如a=9,b=3 時(shí),左邊為
1
2
,右邊為1,顯然不等式不成立.
綜上,只有①③正確,
故選D.
點(diǎn)評(píng):本題考查比較兩個(gè)式子大小的方法,通過(guò)給變量取特殊值,舉反例來(lái)說(shuō)明某個(gè)命題不正確,是一種簡(jiǎn)單有效的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A.選修4-1:幾何證明選講
如圖,直角△ABC中,∠B=90°,以BC為直徑的⊙O交AC于點(diǎn)D,點(diǎn)E是AB的中點(diǎn).
求證:DE是⊙O的切線.
B.選修4-2:矩陣與變換
已知二階矩陣A有特征值-1及其對(duì)應(yīng)的一個(gè)特征向量為
1
-4
,點(diǎn)P(2,-1)在矩陣A對(duì)應(yīng)的變換下得到點(diǎn)P′(5,1),求矩陣A.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l的極坐標(biāo)方程為ρcos(θ-
π
4
)=
2
,曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù)),求曲線C截直線l所得的弦長(zhǎng).
D.選修4-5:不等式選講
已知a,b,c都是正數(shù),且abc=8,求證:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題設(shè)有(1)、(2)、(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿分14分
(1)選修4-2:矩陣與變換
變換T是將平面上每個(gè)點(diǎn)M(x,y)的橫坐標(biāo)乘2,縱坐標(biāo)乘4,變到點(diǎn)M′(2x,4y).
(Ⅰ)求變換T的矩陣;
(Ⅱ)圓C:x2+y2=1在變換T的作用下變成了什么圖形?
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知極點(diǎn)與原點(diǎn)重合,極軸與x軸的正半軸重合.若曲線C1的極坐標(biāo)方程為:5ρ2-3ρ2cos2θ-8=0,直線?的參數(shù)方程為:
x=1-
3
t
y=t
(t為參數(shù)).
(Ⅰ)求曲線C1的直角坐標(biāo)方程;
(Ⅱ)直線?上有一定點(diǎn)P(1,0),曲線C1與?交于M,N兩點(diǎn),求|PM|.|PN|的值.
(3)選修4-5:不等式選講
已知a,b,c為實(shí)數(shù),且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2
+m-1=0.
(Ⅰ)求證:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14
;
(Ⅱ)求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某生物興趣小組對(duì)A、B兩種植物種子的發(fā)芽率進(jìn)行驗(yàn)證性實(shí)驗(yàn),每實(shí)驗(yàn)一次均種下一粒A種子和一粒B種子.已知A、B兩種種子在一定條件下每粒發(fā)芽的概率分別為
1
2
2
3
.假設(shè)兩種種子是否發(fā)芽互相不受影響,任何兩粒種子是否發(fā)芽互相也沒(méi)有影響.
(1)求3粒A種子,至少有一粒未發(fā)芽的概率;
(2)求A、B各3粒種子,A至少2粒發(fā)芽且B全發(fā)芽的概率;
(3)假設(shè)對(duì)B種子的實(shí)驗(yàn)有2次發(fā)芽,則終止實(shí)驗(yàn),否則繼續(xù)進(jìn)行,但實(shí)驗(yàn)的次數(shù)最多不超過(guò)5次,求對(duì)B種子的發(fā)芽實(shí)驗(yàn)終止時(shí),實(shí)驗(yàn)次數(shù)ξ的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多作,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將選題號(hào)填入括號(hào)中.
(1)選修4一2:矩陣與變換
設(shè)矩陣M所對(duì)應(yīng)的變換是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長(zhǎng)到2倍,縱坐標(biāo)伸長(zhǎng)到3倍的伸縮變換.
(Ⅰ)求矩陣M的特征值及相應(yīng)的特征向量;
(Ⅱ)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.
(2)選修4一4:坐標(biāo)系與參數(shù)方程
已知直線C1
x=1+tcosα
y=tsinα
(t為參數(shù)),C2
x=cosθ
y=sinθ
(θ為參數(shù)).
(Ⅰ)當(dāng)α=
π
3
時(shí),求C1與C2的交點(diǎn)坐標(biāo);
(Ⅱ)過(guò)坐標(biāo)原點(diǎn)O做C1的垂線,垂足為A,P為OA中點(diǎn),當(dāng)α變化時(shí),求P點(diǎn)的軌跡的參數(shù)方程.
(3)選修4一5:不等式選講
已知a,b,c均為正實(shí)數(shù),且a+b+c=1.求
4a+1
+
4b+1
+
4c+1
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)本題有(1),(2),(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑.
(1)選修4-2:矩陣與變換
如圖所示:△OAB在伸縮變換M作用下變?yōu)椤鱋A1B1
(i)求矩陣M的特征值及相應(yīng)的特征向量;
(ii)求逆矩陣M-1以及(M-120
(2)選修4-4:坐標(biāo)系與參數(shù)方程.
已知曲線C1的參數(shù)方程為
x=2sinθ
y=cosθ
(θ為參數(shù)),曲線C2的參數(shù)方程為
x=2t
y=t+1
(t為參數(shù))
(i)若將曲線C1與C2上各點(diǎn)的橫坐標(biāo)都縮短為原來(lái)的一半,分別得到曲線C1和C2,求出曲線C1和C2的普通方程;
(ii)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過(guò)極點(diǎn)且與C2垂直的直線的極坐標(biāo)方程.
(3)選修4-5:不等式選講
已知a,b,c為實(shí)數(shù),且a+b+c+2-2m=0,a2+
b 2
4
+
c 2
9
+m-1=0
(i)求證:a2+
b 2
4
+
c 2
9
(a+b+c) 2
14

(ii)求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案