3.若a>0,b>0,且42a+b=2ab,則a+b的最小值是( 。
A.12B.6+2$\sqrt{2}$C.6+4$\sqrt{2}$D.6+4$\sqrt{3}$

分析 a>0,b>0,且42a+b=2ab,即24a+2b=2ab,可得4a+2b=ab,化為:$\frac{4}$+$\frac{2}{a}$=1.再利用“乘1法”與基本不等式的性質即可得出.

解答 解:∵a>0,b>0,且42a+b=2ab,即24a+2b=2ab,可得4a+2b=ab,化為:$\frac{4}$+$\frac{2}{a}$=1.
則a+b=(a+b)$(\frac{4}+\frac{2}{a})$=2$(3+\frac{2a}+\frac{a})$≥2$(3+2\sqrt{\frac{2a}×\frac{a}})$=6+4$\sqrt{2}$,當且僅當b=$\sqrt{2}$a=4+2$\sqrt{2}$時取等號.
因此其最小值是6+4$\sqrt{2}$,
故選:B.

點評 本題考查了“乘1法”與基本不等式的性質,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.a(chǎn)1=1,an+1=$\frac{{a}_{n}}{3{a}_{n}+1}$,則數(shù)列{an}的第6項是$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知等差數(shù)列{an}中,a1=1,前100項和S100=10000.
(1)求數(shù)列{an}的通項公式;
(2)設${b_n}={2^{{a_n}+1}}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設函數(shù)$f(x)=sin(2ωx+\frac{π}{3})+\frac{{\sqrt{3}}}{2}+a(ω>0)$,且f(x)的圖象在y軸右側的第一個最高點的橫坐標為$\frac{π}{6}$.
(1)求ω的值;
(2)如果f(x)在區(qū)間$[-\frac{π}{3},\frac{5π}{6}]$上的最小值為$\sqrt{3}$,求a的值;
(3)若g(x)=f(x)-a,則g(x)的圖象可由y=sinx(x∈R)的圖象經(jīng)過怎樣的變換而得到?并寫出g(x)的對稱軸和對稱中心.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)f(x)=(x2-2x)sin(x-1)+x+1在[-1,3]上的最大值為M,最小值為m,則M+m=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.中心在原點,對稱軸為坐標軸的雙曲線C與圓O:x2+y2=10有公共點P(3,-1),且圓O在P點處的切線與雙曲線C的一條漸近線平行,則該雙曲線的實軸長為( 。
A.$\frac{4\sqrt{5}}{3}$B.4$\sqrt{5}$C.$\frac{8\sqrt{5}}{3}$D.8$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知向量$\overrightarrow{a}$,$\overrightarrow{e}$,|$\overrightarrow{e}$|=1,f(x)=|$\overrightarrow{a}-x\overrightarrow{e}$|是定義在R上的函數(shù),
(1)若f(x)≥f(1)對所有x∈R都成立,求證:($\overrightarrow{a}-\overrightarrow{e}$)⊥$\overrightarrow{e}$;
(2)求當x取何值時,f(x)取到最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在一圓柱中挖去一圓錐所得的工藝部件的三視圖如圖所示,則此工藝部件的表面積為( 。
A.(7+$\sqrt{5}$)πB.(7+2$\sqrt{5}$)πC.(8+$\sqrt{5}$)πD.(8+2$\sqrt{5}$)π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若(ax+2)4展開式中含有x3項的系數(shù)為8則$\int_a^{e^2}{\frac{1}{x}dx=}$( 。
A..2B..$-\frac{1}{e^2}-1$C..$-\frac{1}{e^2}+1$D.2-e

查看答案和解析>>

同步練習冊答案