在長方體ABCD-A1B1C1D1中,AB=1,AD=2,AA1=3,則
BD
AC1
=(  )
A、1B、0C、3D、-3
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:空間向量及應(yīng)用
分析:根據(jù)長方體的同一頂點(diǎn)處的三條棱互相垂直,建立空間直角坐標(biāo)系,表示出
BD
、
AC1
,即可計(jì)算
BD
AC1
解答: 解:如圖所示,
以DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,
則D(0,0,0),A(2,0,0),B(2,1,0),C1(0,1,3);
BD
=(-2,-1,0),
AC1
=(-2,1,3);
BD
AC1
=(-2)×(-2)+(-1)×1+0×3=3.
故選:C.
點(diǎn)評(píng):本題考查了空間向量的數(shù)量積的應(yīng)用問題,解題的關(guān)鍵是建立空間直角坐標(biāo)系,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z滿足(1+i)z=1-i,則
.
z
=( 。
A、1B、-1C、iD、-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知,中心在原點(diǎn)O,焦點(diǎn)在x軸上的橢圓C,它的長軸長為4,短軸長為2
2

(1)求該橢圓C的離心率;
(2)若M,N是橢圓C上的不同二點(diǎn),滿足直線OM與ON的斜率之積為-
1
2
,且
OP
=
OM
+2
ON
,求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)a,b,c滿足a≤b+c≤3a,b2≤a(a+c)≤3b2.求
c-b
a
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)同時(shí)滿足以下三個(gè)條件:
(1)存在反函數(shù)f-1(x);
(2)點(diǎn)(1,1005)在函數(shù)f(x)的圖象上;
(3)函數(shù)f(x+1)的反函數(shù)為f-1(x-1).
則f(1004)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,真命題是( 。
A、函數(shù)f(x)=tan(
π
4
-2x)的單調(diào)遞增區(qū)間為(-
π
8
+
2
,
8
+
2
),k∈Z
B、命題“?x∈R,x2-2>3”的否定是“?x∈R,x2-2<3”
C、z1,z2∈C,若z1,z2為共軛復(fù)數(shù),則z1+z2為實(shí)數(shù)
D、x=
π
4
是函數(shù)f(x)=sin(x-
π
4
)的圖象的一條對(duì)稱軸

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α,β都是銳角,且tanα=
2
3
,tanβ=
9
4
,你能否根據(jù)正切函數(shù)的增減性直接判斷α+β是否為銳角?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

分別過點(diǎn)A(1,3)和點(diǎn)B(2,4)的直線l1和l2互相平行且有最大距離,則l1的方程是( 。
A、x-y-4=0
B、x+y-4=0
C、x=1
D、y=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)方程2x+x+2=0和方程log2x+x+2=0的根分別為p和q,設(shè)函數(shù)f(x)=(x+p)(x+q)+2,則( 。
A、f(2)=f(0)<f(3)
B、f(0)<f(2)<f(3)
C、f(3)<f(0)=f(2)
D、f(0)<f(3)<f(2)

查看答案和解析>>

同步練習(xí)冊(cè)答案