A. | $\frac{y^2}{3}-\frac{x^2}{4}=1$ | B. | $\frac{y^2}{4}-\frac{x^2}{3}=1$ | C. | $\frac{x^2}{3}-\frac{y^2}{4}=1$ | D. | $\frac{x^2}{4}-\frac{y^2}{3}=1$ |
分析 由拋物線標(biāo)準(zhǔn)方程易得其準(zhǔn)線方程,從而可得雙曲線的焦點(diǎn),再根據(jù)焦點(diǎn)在y軸上的雙曲線的漸近線方程,得a、b的另一個方程,求出a、b,即可得到雙曲線的標(biāo)準(zhǔn)方程.
解答 解:由題意,$\frac{a}$=$\frac{\sqrt{3}}{2}$,
∵拋物線${x^2}=4\sqrt{7}y$的準(zhǔn)線方程為y=-$\sqrt{7}$,雙曲線的一個焦點(diǎn)在拋物線${x^2}=4\sqrt{7}y$的準(zhǔn)線上,
∴c=$\sqrt{7}$,
∴a2+b2=c2=7,
∴a=2,b=$\sqrt{3}$,
∴雙曲線的方程為$\frac{{y}^{2}}{3}-\frac{{x}^{2}}{4}$=1.
故選A.
點(diǎn)評 本題主要考查雙曲線和拋物線的標(biāo)準(zhǔn)方程與幾何性質(zhì),考查學(xué)生的計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}x±y=0$ | B. | x±y=0 | C. | 2x±y=0 | D. | $\sqrt{3}x±y=0$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{4}-{y^2}=1$ | B. | $\frac{3{x}^{2}}{20}$-$\frac{3{y}^{2}}{5}$=1 | C. | $\frac{{3{x^2}}}{20}-\frac{{3{y^2}}}{5}=1$ | D. | $\frac{{3{x^2}}}{5}-\frac{{3{y^2}}}{20}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com