9.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的離心率為2,那么雙曲線的漸近線方程為(  )
A.$\sqrt{2}x±y=0$B.x±y=0C.2x±y=0D.$\sqrt{3}x±y=0$

分析 利用雙曲線的離心率,轉化求出a,b關系,即可求解雙曲線的漸近線方程.

解答 解:雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的離心率為2,
可得$\frac{c}{a}=2$,即$\frac{{a}^{2}+^{2}}{{a}^{2}}=4$,可得$\frac{a}=\sqrt{3}$,
雙曲線的漸近線方程為:y=±$\sqrt{3}x$,
即$\sqrt{3}x±y=0$.
故選:D.

點評 本題考查雙曲線的簡單性質(zhì)的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.在△ABC中,若sin B•sin C=cos2$\frac{A}{2}$,且sin2B+sin2C=sin2A,則△ABC是(  )
A.等邊三角形B.直角三角形C.等腰三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設f(x)是定義在R上的奇函數(shù),且對任意x∈R,都有f(x+2)=-f(x),當0≤x≤1時,f(x)=x2
(I)當-2≤x≤0時,求f(x)的解析式;
(II)設向量$\overrightarrow a=(2sinθ,1),\overrightarrow b=(9,16cosθ)$,若$\overrightarrow a,\overrightarrow b$同向,求$f(\frac{2017}{sinθ+cosθ})$的值;
(III)定義:一個函數(shù)在某區(qū)間上的最大值減去最小值的差稱為此函數(shù)在此區(qū)間上的“界高”.
求f(x)在區(qū)間[t,t+1](-2≤t≤0)上的“界高”h(t)的解析式;在上述區(qū)間變化的過程中,“界高”h(t)的某個值h0共出現(xiàn)了四次,求h0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.圓x2+y2-2x-8y+13=0與直線ax+y-1=0的相交所得弦長為2$\sqrt{3}$,則a=( 。
A.-$\frac{4}{3}$B.-$\frac{3}{4}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,在三棱柱ABC-A1B1C1中,AB⊥平面BB1C1C,∠BCC1=$\frac{π}{3}$,AB=BB1=2,BC=1,D為CC1中點.
(1)求證:DB1⊥平面ABD;
(2)求二面角A-B1D-A1的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知圓C:x2+y2-6x-4y+4=0,直線l1被圓所截得的弦的中點為P(5,3).
(1)求直線l1的方程;
(2)若直線l2:x+y+b=0與圓C相交,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.函數(shù)$f(x)=({x-\frac{1}{2}})({x-\frac{5}{2}})({x-\frac{7}{2}})$,數(shù)列{an}的通項公式an=|f(n)|,若數(shù)列從第k項起每一項隨著n項數(shù)的增大而增大,則k的最小值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知雙曲線的一條漸近線過點$({2,\sqrt{3}})$,且雙曲線的一個焦點在拋物線${x^2}=4\sqrt{7}y$的準線上,則雙曲線的標準方程為(  )
A.$\frac{y^2}{3}-\frac{x^2}{4}=1$B.$\frac{y^2}{4}-\frac{x^2}{3}=1$C.$\frac{x^2}{3}-\frac{y^2}{4}=1$D.$\frac{x^2}{4}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.每袋砂糖的標準重量是500克,質(zhì)監(jiān)部門為了了解一批砂糖的重量狀況,從中抽取了9袋,稱得各袋的重量(單位:克)如下:
490    495    493    498    499    500    503     507     506
(Ⅰ)求出這組值的平均值和標準差;
(Ⅱ)若在低于標準值的5袋中隨機沒收兩袋,求這兩袋的重量都在平均值之下的概率.

查看答案和解析>>

同步練習冊答案