分析 設(shè)出|MF1|=m,|MF2|=n,利用雙曲線的定義以及余弦定理列出關(guān)系式,求出mn的值,然后求解三角形的面積.
解答 解:設(shè)|MF1|=m,|MF2|=n,
則$\left\{\begin{array}{l}{|m-n|=6①}\\{{m}^{2}+{n}^{2}-mn=52②}\end{array}\right.$,
由②-①2得 mn=16
∴△F1MF2的面積S=$\frac{1}{2}×16×\frac{\sqrt{3}}{2}$=4$\sqrt{3}$,
故答案為4$\sqrt{3}$.
點評 本題考查雙曲線的簡單性質(zhì),雙曲線的定義以及余弦定理的應(yīng)用,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{y^2}{3}-\frac{x^2}{4}=1$ | B. | $\frac{y^2}{4}-\frac{x^2}{3}=1$ | C. | $\frac{x^2}{3}-\frac{y^2}{4}=1$ | D. | $\frac{x^2}{4}-\frac{y^2}{3}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{6}}}{2}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,0,1,2} | B. | {-2,-1,0,1} | C. | {0,1} | D. | {-1,0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | 4 | C. | -5 | D. | 5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com