【題目】在銳角三角形中,邊a、b是方程x2-2x+2=0的兩根,角A、B滿足:2sinA+B)-=0,求角C的度數(shù),邊c的長(zhǎng)度及ABC的面積。

【答案】,

【解析】

試題分析:由2sinA+B)-=0,,得到sinA+B)的值,根據(jù)銳角三角形即可求出A+B的度數(shù),進(jìn)而求出角C的度數(shù),然后由韋達(dá)定理,根據(jù)已知的方程求出a+b及ab的值,利用余弦定理表示出,把cosC的值代入變形后,將a+b及ab的值代入,開方即可求出c的值,利用三角形的面積公式表示出ABC的面積,把a(bǔ)b及sinC的值代入即可求出值

試題解析:由2sinA+B)-=0,得sinA+B)= , 2分

∵△ABC為銳角三角形

A+B=120°, C=60°, 4分

a、b是方程x2-2x+2=0的兩根,a+b=2,

a·b=2, 6分

c2=a2+b22a·bcosC=a+b)2-3ab=12-6=6, 10分

c=, =×2×= 12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的中心在原點(diǎn),長(zhǎng)軸左、右端點(diǎn)軸上,橢圓的短軸為,且、的離心率都為,直線, 交于兩點(diǎn),與交于兩點(diǎn),這四點(diǎn)縱坐標(biāo)從大到小依次為、、.

(1)設(shè),求的比值;

(2)若存在直線,使得,求兩橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象關(guān)于直線對(duì)稱.

(1)不等式對(duì)任意恒成立,求實(shí)數(shù)的最大值;

(2)設(shè)內(nèi)的實(shí)根為, ,若在區(qū)間上存在,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種“籠具”由內(nèi),外兩層組成,無下底面,內(nèi)層和外層分別是一個(gè)圓錐和圓柱,其中圓柱與圓錐的底面周長(zhǎng)相等,圓柱有上底面,制作時(shí)需要將圓錐的頂端剪去,剪去部分和接頭忽略不計(jì),已知圓柱的底面周長(zhǎng)為,高為,圓錐的母線長(zhǎng)為.

(1)求這種“籠具”的體積;

(2)現(xiàn)要使用一種紗網(wǎng)材料制作50個(gè)“籠具”,該材料的造價(jià)為每平方米8元,共需多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2015江蘇高考,18】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,且右焦點(diǎn)F到左準(zhǔn)線l的距離為3.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過F的直線與橢圓交于A,B兩點(diǎn),線段AB的垂直平分線分別交直線l和AB于點(diǎn)P,C,若PC=2AB,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生期中考試語文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[50,60),[6070),[70,80),[80,90),[90100]

1)求圖中a的值;

2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語文成績(jī)的平均分;

3)若這100名學(xué)生語文成績(jī)某些分?jǐn)?shù)段的人數(shù)(x)與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如表所示,求數(shù)學(xué)成績(jī)?cè)?/span>[50,90)之外的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在D上的函數(shù),若存在區(qū)間[m,n]D及正實(shí)數(shù)k,使函數(shù)f(x)在[m,n]上的值域恰為[km,kn],則稱函數(shù)f(x)是k型函數(shù).給出下列說法:
①f(x)=3﹣ 不可能是k型函數(shù);
②若函數(shù)f(x)= (a≠0)是1型函數(shù),則n﹣m的最大值為 ;
③若函數(shù)f(x)=﹣ x2+x是3型函數(shù),則m=﹣4,n=0.
其中正確說法個(gè)數(shù)為(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=
(1)若f(x)>k的解集為{x|x<﹣3或x>﹣2},求k的值;
(2)若對(duì)任意x>0,f(x)≤t恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形與梯形所在的平面互相垂直, , , , , 的中點(diǎn), 中點(diǎn).

1)求證:平面∥平面;

2)求證:平面平面

查看答案和解析>>

同步練習(xí)冊(cè)答案