【題目】設(shè)直線l1:y=k1x+1,l2:y=k2x-1,其中實數(shù)k1,k2滿足k1k2+2=0. 證明:
(1)l1與l2相交;
(2)l1與l2的交點在曲線2x2+y2=1上.
【答案】(1)相交;(2)
【解析】
(1)利用反證法證明.假設(shè)l1與l2不相交,則l1與l2平行,有k1=k2.代入k1k2+2=0,找到矛盾.(2) 設(shè)l1與l2的交點P的坐標(biāo)(x,y)滿足故知x≠0,從而
代入k1k2+2=0,得,整理后,得2x2+y2=1,所以交點P在曲線2x2+y2=1上.
(1)反證法.假設(shè)l1與l2不相交,則l1與l2平行,有k1=k2.代入k1k2+2=0,得+2=0,此與k1為實數(shù)的事實相矛盾,從而k1≠k2,即l1與l2相交.
(2)l1與l2的交點P的坐標(biāo)(x,y)滿足故知x≠0,從而
代入k1k2+2=0,得,整理后,得2x2+y2=1,所以交點P在曲線2x2+y2=1上.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為 (θ為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為 . (Ⅰ)求圓C的普通方程和直線l的直角坐標(biāo)方程;
(Ⅱ)設(shè)M是直線l上任意一點,過M做圓C切線,切點為A、B,求四邊形AMBC面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我市“金牛”公園欲在長、寬分別為 、的矩形地塊內(nèi)開鑿一“撻圓”形水池(如圖),池邊由兩個半橢圓和()組成,其中,“撻圓”內(nèi)切于矩形且其左右頂點, 和上頂點構(gòu)成一個直角三角形.
(1)試求“撻圓”方程;
(2)若在“撻圓”形水池內(nèi)建一矩形網(wǎng)箱養(yǎng)殖觀賞魚,則該網(wǎng)箱水面面積最大為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(0,-2),橢圓E: (a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為,O為坐標(biāo)原點.
(1)求E的方程;
(2)設(shè)過點A的動直線l與E相交于P,Q兩點.當(dāng)△OPQ的面積最大時,求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為, 為過定點的兩條直線.
(1)若與拋物線均無交點,且,求直線的斜率的取值范圍;
(2)若與拋物線交于兩個不同的點,以為直徑的圓過點,求圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗證這個結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進行解答.選題情況如右表:(單位:人)
幾何題 | 代數(shù)題 | 總計 | |
男同學(xué) | 22 | 8 | 30 |
女同學(xué) | 8 | 12 | 20 |
總計 | 30 | 20 | 50 |
附表及公式
P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2= .
(1)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺和空間能力與性別有關(guān)?
(2)經(jīng)過多次測試后,甲每次解答一道幾何題所用的時間在5~7分鐘,乙每次解答一道幾何題所用的時間在6~8分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.
(3)現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對她們的答題情況進行全程研究,記甲、乙兩女生被抽到的人數(shù)為 X,求 X的分布列及數(shù)學(xué)期望 EX.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的離心率為 ,其左頂點A在圓O:x2+y2=16上. (Ⅰ)求橢圓W的方程;
(Ⅱ)若點P為橢圓W上不同于點A的點,直線AP與圓O的另一個交點為Q.是否存在點P,使得 ?若存在,求出點P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)二次函數(shù)滿足條件:
(1)當(dāng)時,且;
(2)當(dāng)時,;
(3)在R上的最小值為0.
求最大的m(m>1),使得存在,只要,就有
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com