【題目】為計算, 設計了如圖所示的程序框圖,則空白框中應填入( )

A. B. C. D.

【答案】A

【解析】

根據(jù)程序框圖輸出的S的值即可得到空白框中應填入的內容.

由程序框圖的運行,可得:S0,i0

滿足判斷框內的條件,執(zhí)行循環(huán)體,a1,S1,i1

滿足判斷框內的條件,執(zhí)行循環(huán)體,a2×(﹣2),S1+2×(﹣2),i2

滿足判斷框內的條件,執(zhí)行循環(huán)體,a3×(﹣22,S1+2×(﹣2+3×(﹣22,i3

觀察規(guī)律可知:滿足判斷框內的條件,執(zhí)行循環(huán)體,a99×(﹣299,S1+2×(﹣2+3×(﹣22++100×(﹣299i100,此時,應該不滿足判斷框內的條件,退出循環(huán),輸出S的值,所以判斷框中的條件應是i100

故選:A

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】2020年寒假是特殊的寒假,因為抗擊疫情全體學生只能在家進行網上在線學習,為了研究學生在網上學習的情況,某學校在網上隨機抽取120名學生對線上教育進行調查,其中男生與女生的人數(shù)之比為1113,其中男生30人對于線上教育滿意,女生中有15名表示對線上教育不滿意.

1)完成列聯(lián)表,并回答能否有99%的把握認為對線上教育是否滿意與性別有關;

滿意

不滿意

總計

男生

30

女生

15

合計

120

2)從被調查的對線上教育滿意的學生中,利用分層抽樣抽取8名學生,再在8名學生中抽取3名學生,作線上學習的經驗介紹,其中抽取男生的個數(shù)為,求出的分布列及期望值.

參考公式:附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

0.706

3.841

5.024

6.635

7.879

10828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】針對時下的抖音熱,某校團委對學生性別和喜歡抖音是否有關作了一次調查,其中被調查的男女生人數(shù)相同,男生喜歡抖音的人數(shù)占男生人數(shù)的,女生喜歡抖音的人數(shù)占女生人數(shù),若有95%的把握認為是否喜歡抖音和性別有關則調查人數(shù)中男生可能有( )人

附表:

0.050

0.010

k

3.841

6.635

附:

A.2545B.45C.4560D.7560

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高二某班共有45人,學號依次為1、23、45,現(xiàn)按學號用系統(tǒng)抽樣的辦法抽取一個容量為5的樣本,已知學號為6、24、33的同學在樣本中,那么樣本中還有兩個同學的學號應為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù),求的極值;

(2)證明:.

(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面 平面,,, .

(1)證明

(2)設點在線段上,且,若的面積為,求四棱錐的體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓)的左焦點為,點為橢圓上任意一點,且的最小值為,離心率為.

(1)求橢圓的方程;

(2)設O為坐標原點,若動直線與橢圓交于不同兩點、、都在軸上方),且.

(i)當為橢圓與軸正半軸的交點時,求直線的方程;

(ii)對于動直線,是否存在一個定點,無論如何變化,直線總經過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】編號分別為12名籃球運動員在某次籃球比賽中的得分記錄如下:

運動員編號

得分

5

10

12

16

8

21

27

15

6

22

18

29

1)完成如下的頻率分布表:

得分區(qū)間

頻數(shù)

頻率

3

合計

2)從得分在區(qū)間內的運動員中隨機抽取2人,求這2人得分之和大于25的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】、為兩個不重合的平面,則的充要條件是(

A.內有無數(shù)條直線與平行B.、垂直于同一平面

C.平行于同一條直線D.內有兩條相交直線與平行

查看答案和解析>>

同步練習冊答案