7.如圖所示,矩形ABCD中,AB=3,BC=4,沿對(duì)角線BD把△ABD折起,使點(diǎn)A在平面BCD上的射影E落在BC上.

(1)求證:平面ACD⊥平面ABC;
(2)求三棱錐A-BCD的體積.

分析 (1)由AE⊥平面BCD得AE⊥CD,結(jié)合CD⊥BC得出CD⊥平面ABC,故而平面ACD⊥平面ABC;
(2)證明AB⊥平面ACD,故而VA-BCD=VB-ACD=$\frac{1}{3}$•S△ACD•AB.

解答 (1)證明:∵AE⊥平面BCD,CD?平面BCD,
∴AE⊥CD.
又BC⊥CD,且AE∩BC=E,
∴CD⊥平面ABC.
又CD?平面ACD,
∴平面ACD⊥平面ABC.
(2)由(1)知,CD⊥平面ABC,又AB?平面ABC,
∴CD⊥AB.
又∵AB⊥AD,CD∩AD=D,
∴AB⊥平面ACD.
∴VA-BCD=VB-ACD=$\frac{1}{3}$•S△ACD•AB.
又∵在△ACD中,AC⊥CD,AD=BC=4,AB=CD=3,
∴AC=$\sqrt{A{D^2}-C{D^2}}=\sqrt{{4^2}-{3^2}}=\sqrt{7}$.
∴VA-BCD=$\frac{1}{3}×\frac{1}{2}×\sqrt{7}×3×3=\frac{{3\sqrt{7}}}{2}$.

點(diǎn)評(píng) 本題考查了面面垂直的判定,線面垂直的判定,棱錐的體積計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列函數(shù)是偶函數(shù)的是(  )
A.y=tan3xB.y=cos2x+1C.y=2sinx-1D.y=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知$f(x)=a{sin^3}x+b\root{3}{x}{cos^3}x+4(a,b∈R),且f(sin10°)=5$,則f(cos100°)=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)a=log32,b=ln2,$c={5^{\frac{1}{2}}}$則( 。
A.c>b>aB.a>b>cC.a>c>bD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,且s6>s7>s5,給出下列五個(gè)命題:①d>0;②S11>0;③S12<0;④數(shù)列{Sn}中的最大項(xiàng)為S11;⑤|a5|>|a7|.其中正確命題的個(gè)數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.隨著移動(dòng)互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運(yùn)而生.某市場(chǎng)研究人員為了了解共享單車運(yùn)營(yíng)公司M的經(jīng)營(yíng)狀況,對(duì)該公司最近六個(gè)月內(nèi)的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),并繪制了相應(yīng)的折線圖.

(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合月度市場(chǎng)占有率y與月份代碼x之間的關(guān)系.求y關(guān)于x的線性回歸方程,并預(yù)測(cè)M公司2017年4月份的市場(chǎng)占有率;
(Ⅱ)為進(jìn)一步擴(kuò)大市場(chǎng),公司擬再采購(gòu)一批單車.現(xiàn)有采購(gòu)成本分別為1000元/輛和1200元/輛的A、B兩款車型可供選擇,按規(guī)定每輛單車最多使用4年,但由于多種原因(如騎行頻率等)會(huì)導(dǎo)致車輛報(bào)廢年限各不相同.考慮到公司運(yùn)營(yíng)的經(jīng)濟(jì)效益,該公司決定先對(duì)兩款車型的單車各100輛進(jìn)行科學(xué)模擬測(cè)試,得到兩款單車使用壽命頻數(shù)表如下:

報(bào)廢年限
車型
1年2年3年4年總計(jì)
A20353510100
B10304020100
經(jīng)測(cè)算,平均每輛單車每年可以帶來(lái)收入500元.不考慮除采購(gòu)成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,且以頻率作為每輛單車使用壽命的概率.如果你是M公司的負(fù)責(zé)人,以每輛單車產(chǎn)生利潤(rùn)的期望值為決策依據(jù),你會(huì)選擇采購(gòu)哪款車型?
參考數(shù)據(jù):,$\sum_{i=1}^6{({x_i}-\overline x)({y_i}}-\overline y)=35$,$\sum_{i=1}^6{{{({x_i}-\overline x)}^2}}$=17.5.
參考公式:
回歸直線方程為$\hat y=\hat bx+\hat a$其中$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat$$\overline{t}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.若定義在R上的函數(shù)y=f(x)滿足:對(duì)于任意實(shí)數(shù)x,y,總有f(x+y)+f(x-y)=2f(x)f(y)恒成立,我們稱f(x)為“類余弦型”函數(shù).
(1)已知f(x)為“類余弦型”函數(shù),且$f(1)=\frac{5}{4}$,求f(0)和f(2)的值;
(2)在(1)的條件下,定義數(shù)列an=2f(n+1)-f(n)(n=1,2,3…),求${log_2}\frac{a_1}{3}+{log_2}\frac{a_2}{3}+…+{log_2}\frac{{{a_{2017}}}}{3}$的值;
(3)若f(x)為“類余弦型”函數(shù),且對(duì)于任意非零實(shí)數(shù)t,總有f(t)>1,證明:函數(shù)f(x)為偶函數(shù);設(shè)有理數(shù)x1,x2滿足|x1|<|x2|,判斷f(x1)和f(x2)的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,正方體ABCD-A1B1C1D1棱長(zhǎng)為1.
(1)求證:BD1⊥平面ACB1;
(2)求直線BA1與平面A1C1D1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)是偶函數(shù),當(dāng)0<x1<x2時(shí),[f(x2)-f(x1)](x2-x1)>0恒成立,設(shè)$a=f(-\frac{1}{2}),b=f(2),c=f(3)$,則a,b,c的大小關(guān)系為( 。
A.b<a<cB.a<b<cC.b<c<aD.c<b<a

查看答案和解析>>

同步練習(xí)冊(cè)答案