7.設(shè)i為虛數(shù)單位,復(fù)數(shù)z=(a3-a)+$\frac{a}{(1-a)}$i,(a∈R)為純虛數(shù),則a的值為(  )
A.-1B.1C.±1D.0

分析 由實部等于0且虛部不為0求得實數(shù)a的值.

解答 解:由$\left\{\begin{array}{l}{{a}^{3}-a=0}\\{\frac{a}{1-a}≠0}\end{array}\right.$,解得a=-1.
故選:A.

點評 本題考查復(fù)數(shù)的基本概念,考查了復(fù)數(shù)為純虛數(shù)的條件,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)PH⊥平面ABC,且PA,PB,PC相等,則H是△ABC的( 。
A.內(nèi)心B.外心C.垂心D.重心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.對于函數(shù)f(x),若定義域內(nèi)存在實數(shù)x滿足f(-x)=-f(x),則稱f(x)為“限制奇函數(shù)”,
(1)試判斷f(x)=x2+2x-4是否為“限制奇函數(shù)”?并說明理由;
(2)設(shè)f(x)=2x+m是定義在[-1,2]上的“限制奇函數(shù)”,求實數(shù)m的取值范圍;
(3)設(shè)f(x)=4x-m•2x+1+m2-3是定義在R上的“限制奇函數(shù)”,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.等差數(shù)列{an}共有2n+1項,其中奇數(shù)項之和為6,偶數(shù)項之和為5,則n的值是( 。
A.3B.6C.8D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.?dāng)?shù)列{an}中,a1=2,an+1-an=2n,則數(shù)列的通項an=2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.圓x2+2x+y2+4y-3=0上到直線x+y+1=0的距離為$3\sqrt{2}$的點共有( 。
A.4個B.3個C.2個D.1個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,D是BC的中點,AB=4,AC=3,則$\overline{AD}•\overline{BC}$=( 。
A.-7B.2C.$-\frac{7}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.${C}_{3}^{3}$+${C}_{4}^{3}$+${C}_{5}^{3}$+…+${C}_{10}^{3}$=330(用數(shù)字解答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.化簡$\frac{1}{{{2^2}-1}}+\frac{1}{{{4^2}-1}}+\frac{1}{{{6^2}-1}}+\frac{1}{{{8^2}-1}}+\frac{1}{{{{10}^2}-1}}$=(  )
A.$\frac{7}{12}$B.$\frac{7}{11}$C.$\frac{7}{10}$D.$\frac{5}{11}$

查看答案和解析>>

同步練習(xí)冊答案