【題目】平面α過正方體ABCD﹣A1B1C1D1的面對角線 ,且平面α⊥平面C1BD,平面α∩平面ADD1A1=AS,則∠A1AS的正切值為(
A.
B.
C.
D.

【答案】D
【解析】解:正方體ABCD﹣A1B1C1D1中,BD⊥AC,BD⊥AA1 , ∵AC∩AA1=A,∴BD⊥平面AA1C,∴A1C⊥BD,
同理,得A1C⊥BC1 ,
∵BD∩BC1=B,∴A1C⊥平面C1BD,
如圖,以AA1為側(cè)棱補(bǔ)作一個(gè)正方體AEFG﹣A1PQS,
使得側(cè)面AGRA1與平面ADD1A1共面,
連結(jié)AQ,則AQ∥CA1 , 連結(jié)QB1 , 交A1R于S,則平面AQB1就是平面α,且AS為所求作,
∵AQ∥CA1 , ∴AQ⊥平面C1BD,
∵AQ平面α,∴平面α⊥平面C1BD,
∴tan∠A1AS= =
故選:D.

【考點(diǎn)精析】認(rèn)真審題,首先需要了解平面與平面垂直的性質(zhì)(兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}的前n項(xiàng)和為Sn=a2n+b,且a1=3.
(1)求a、b的值及數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為 ,且它的一個(gè)焦點(diǎn) 的坐標(biāo)為 .
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過焦點(diǎn) 的直線與橢圓相交于 兩點(diǎn), 是橢圓上不同于 的動(dòng)點(diǎn),試求 的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某游艇制造廠研發(fā)了一種新游艇,今年前5個(gè)月的產(chǎn)量如下:

(1)設(shè)關(guān)于的回歸直線方程為現(xiàn)根據(jù)表中數(shù)據(jù)已經(jīng)正確計(jì)算出了的值為,試求的值,并估計(jì)該廠月份的產(chǎn)量;(計(jì)算結(jié)果精確到

(Ⅱ)質(zhì)檢部門發(fā)現(xiàn)該廠月份生產(chǎn)的游艇都存在質(zhì)量問題,要求廠家召回;現(xiàn)有一旅游公司曾向該廠購買了今年前兩個(gè)月生產(chǎn)的游艇艘,求該旅游公司有游艇被召回的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),恒成立,求實(shí)數(shù)m的取值范圍;

(2)是否存在整數(shù)a、b(其中a、b是常數(shù),且a<b),使得關(guān)于x的不等式的解集為?若存在,求出a、b的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo) 中,設(shè)橢圓 的左右兩個(gè)焦點(diǎn)分別為 ,過右焦點(diǎn) 且與 軸垂直的直線 與橢圓 相交,其中一個(gè)交點(diǎn)為 .

(1)求橢圓 的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面程序框圖中,若輸入互不相等的三個(gè)正實(shí)數(shù)a,b,c(abc≠0),要求判斷△ABC的形狀,則空白的判斷框應(yīng)填入(
A.a2+b2>c2
B.a2+c2>b2?
C.b2+c2>a2
D.b2+a2=c2?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD,PC⊥底面ABCDADBC,AD=2BC=2,PC=2,ABC是以AC為斜邊的等腰直角三角形,EPD的中點(diǎn).

(1)求證:平面EAC⊥平面PCD;

(2)求直線PA與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列,,,(), , .

(I)求;

(Ⅱ)猜想數(shù)列的通項(xiàng)公式,并證明;

(Ⅲ)設(shè)函數(shù),若對任意恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案