2.如圖,網(wǎng)絡(luò)紙上正方形小格的邊長為1,圖中粗線畫出的是某幾何體毛坯的三觀圖,切削該毛坯得到一個表面積最大的長方體,則該長方體的表面積為( 。
A.24B.16+32$\sqrt{2}$C.16+8$\sqrt{2}$D.32

分析 由三視圖可得,直觀圖是底面直徑、高都為4的圓柱,切削該毛坯得到一個表面積最大的長方體,長方體的底面為邊長為2$\sqrt{2}$的正方體,即可求出長方體的表面積.

解答 解:由三視圖可得,直觀圖是底面直徑、高都為4的圓柱,切削該毛坯得到一個表面積最大的長方體,長方體的底面為邊長為2$\sqrt{2}$的正方體,該長方體的表面積為$2×(2\sqrt{2})^{2}+4×2\sqrt{2}×4$=16+32$\sqrt{2}$,
故選B.

點評 本題考查三視圖,考查表面積的計算,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知數(shù)列{an}的前五項依次為$0,\frac{{\sqrt{3}}}{3},\frac{{\sqrt{2}}}{2},\frac{{\sqrt{15}}}{5},\frac{{\sqrt{6}}}{3}$,請參考前四項歸納猜想出一個通項公式,且第五項也滿足猜想,你的猜想結(jié)果是an=$\sqrt{\frac{n-1}{n+1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.2016年美國總統(tǒng)大選過后,有媒體從某公司的全體員工中隨機抽取了200人,對他們的投票結(jié)果進行了統(tǒng)計(不考慮棄權(quán)等其他情況),發(fā)現(xiàn)支持希拉里的一共有95人,其中女員工55人,支持特朗普的男員工有60人.
(Ⅰ)根據(jù)已知條件完成下面的2×2列聯(lián)表:
支持希拉里支持特朗普合計
男員工
女員工
合計
(Ⅱ)根據(jù)表格中的數(shù)據(jù),是否有95%的把握認(rèn)為投票結(jié)果與性別有關(guān)?
附:
P(K2≥k00.150.100.050.0250.0100.0050.001
K02.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=|x-4|,g(x)=a|x|,a∈R.
(Ⅰ)當(dāng)a=2時,解關(guān)于x的不等式f(x)>2g(x)+1;
(Ⅱ)若不等式f(x)≥g(x)-4對任意x∈R恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx-a(x-1),a∈R.
(Ⅰ)求函數(shù)f(x)在點(1,f(1))點處的切線方程;
(Ⅱ)當(dāng)x≥1時,f(x)≤$\frac{lnx}{x+1}$恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{1+cos\frac{πx}{2},x>1}\\{x^2,0<x≤1}\end{array}\right.$,函數(shù)g(x)=x+$\frac{1}{x}$+a(x>0),若存在唯一的x0,使得h(x)=min{f(x),g(x)}的值為h(x0),則實數(shù)a的取值范圍為(-∞,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=ax+x2-xlna(a>1),x∈[-1,1].
(1)證明:f(0)是f(x)的極小值;
(2)對任意x1,x2∈[-1,1],使得|f(x1)-f(x2)|≤e-1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.《最強大腦》是江蘇衛(wèi)視推出國內(nèi)首檔大型科學(xué)類真人秀電視節(jié)目,該節(jié)目集結(jié)了國內(nèi)外最頂尖的腦力高手,堪稱腦力界的奧林匹克,某校為了增強學(xué)生的記憶力和辨識力也組織了一場類似《最強大腦》的PK賽,A、B兩隊各由4名選手組成,每局兩隊各派一名選手PK,除第三局勝者得2分外,其余各局勝者均得1分,每局的負(fù)者得0分,假設(shè)每局比賽兩隊選手獲勝的概率均為0.5,且各局比賽結(jié)果相互獨立.
(1)求比賽結(jié)束時A隊的得分高于B隊的得分的概率;
(2)求比賽結(jié)束時B隊得分X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.圖所示的陰影部分由坐標(biāo)軸、直線x=1及曲線y=ex-lne圍成,現(xiàn)向矩形區(qū)域OABC內(nèi)隨機投擲一點,則該點落在非陰影區(qū)域的概率是( 。
A.$\frac{1}{e}$B.$\frac{1}{e-1}$C.1-$\frac{1}{e}$D.1-$\frac{1}{e-1}$

查看答案和解析>>

同步練習(xí)冊答案