6.數(shù)列{an}是等比數(shù)列,a2•a10=4,且a2+a10>0,則a6=(  )
A.1B.2C.±1D.±2

分析 根據(jù)等比數(shù)列的性質(zhì)得到a2•a10=a62=4,由此求得a6的值.

解答 解:∵a2•a10=4,a2+a10>0,
∴a62=4,a2>0,a10>0,
∴a6=±2,a6>0,
∴a6=2.
故選:B.

點評 本題考查等比數(shù)列的通項,考查學(xué)生的計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=2x,等差數(shù)列{an}的公差為2.若f(a2+a4+a6+a8+a10)=4,則log2[f(a1)•f(a2)•f(a3)•…•f(a10)]=( 。
A.8B.4C.-6D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知公差不為0的等差數(shù)列{an}滿足a1,a3,a4成等比數(shù)列,Sn為數(shù)列{an}的前n項和,則$\frac{{{S_4}-{S_2}}}{{{S_5}-{S_3}}}$的值為( 。
A.-2B.-3C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知數(shù)列{an}的前n項和為Sn,a1=1,an+1=3Sn+2,則a4=( 。
A.64B.80C.256D.320

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=2sinxcosx-$\sqrt{3}cos2x({x∈R})$.
(1)若f(a)=$\frac{1}{2}$且$a∈({\frac{5π}{12},\frac{2π}{3}})$,求cos2a;
(2)求曲線y=f(x)在點(0,f(0))處的切線方程;
(3)記函數(shù)f(x)在$x∈[{\frac{π}{4},\frac{π}{2}}]$上的最大值為b,且函數(shù)f(x)在[aπ,bπ](a<b)上單調(diào)遞增,求實數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$\overrightarrow a=(m,2),\overrightarrow b=(4,-2)$,且$\overrightarrow a∥\overrightarrow b$,則$|\overrightarrow a-\overrightarrow b|$=4$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-1,1),(2$\overrightarrow{a}$+$\overrightarrow$)∥($\overrightarrow{a}$-m$\overrightarrow$),則m=( 。
A.$\frac{1}{2}$B.2C.-2D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知0<a<1<b,函數(shù)f(x)=lg(bax-abx)定義域為(-1,1),值域為(-∞,0),則a(b-$\frac{3}{2}$)的取值范圍是( 。
A.($\frac{1-\sqrt{5}}{4}$,0)B.($\frac{1-\sqrt{5}}{4}$,$\frac{\sqrt{5}-2}{2}$)C.[$\frac{9-9\sqrt{5}}{32}$,$\frac{\sqrt{5}-2}{2}$)D.[$\frac{9-9\sqrt{5}}{32}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若定義在R上的函數(shù)f(x)滿足f(0)=-1,f($\frac{1}{m-1}$)<$\frac{1}{m-1}$,其導(dǎo)函數(shù)f′(x)滿足f′(x)>m,且當x∈[-π,π]時,函數(shù)g(x)=-sin2x-(m+4)cosx+4有兩個不相同的零點,則實數(shù)m的取值范圍是( 。
A.(-∞,-8)B.(-∞,-8]∪(0,1)C.(-∞,-8]∪[0,1]D.(-8,1)

查看答案和解析>>

同步練習(xí)冊答案