設橢圓C:的左、右焦點分別為F1、F2,A是橢圓C上的一點,,坐標原點O到直線AF1的距離為.
(1)求橢圓C的方程;
(2)設Q是橢圓C上的一點,過點Q的直線l 交x 軸于點,交y 軸于點M,若,求直線l 的斜率.
解:(1)由題意知,,其中,
由于,則有,所以點A的坐標為,  
AF1所在的直線方程為,
所以坐標原點O到直線AF1的距離為  
,所以,解得.
故所求橢圓C的方程為    
(2) 由題意知直線l 的斜率存在.設直線l 的斜率為k , 直線l 的方程為,  
則有M(0,k),設,由于Q, F,M三點共線,且,
根據(jù)題意,得,解得  
又點Q在橢圓上,
所以      
解得.綜上,直線l 的斜率為.  
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標系xOy中,已知橢圓C:
y2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,左右兩個焦分別為F1、F2.過右焦點F2且與軸垂直的
直線與橢圓C相交M、N兩點,且|MN|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設橢圓C的左頂點為A,下頂點為B,動點P滿足
PA
AB
=m-4,(m∈R)試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學 來源:廣東省揭陽市2007年高中畢業(yè)班第一次高考模擬考試題(理科) 題型:044

如圖,在直角坐標系xOy中,已知橢圓的離心率e=,左右兩個焦分別為F1、F2.過右焦點F2且與x軸垂直的直線與橢圓C相交M、N兩點,且|MN|=1.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設橢圓C的左頂點為A,下頂點為B,動點P滿足,()試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河南鄭州盛同學校高三4月模擬考試文科數(shù)學試卷(解析版) 題型:解答題

設F1、F2分別為橢圓C: =1(a>b>0)的左、右兩個焦 點。(1)若橢圓C上的點A(1,)到F1、F2兩點的 距離之和等于4,寫出橢圓C的方程和焦點坐標;

(2)設點K是(1)中所得橢圓上的動點,求線段F1K的中點的軌跡方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省湛江二中高三(上)第一次月考數(shù)學試卷(理科)(解析版) 題型:解答題

如圖,在直角坐標系xOy中,已知橢圓C:+=1(a>b>0)的離心率e=,左右兩個焦分別為F1、F2.過右焦點F2且與軸垂直的
直線與橢圓C相交M、N兩點,且|MN|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設橢圓C的左頂點為A,下頂點為B,動點P滿足=m-4,(m∈R)試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年內(nèi)蒙古赤峰市高三統(tǒng)考數(shù)學試卷(文科)(解析版) 題型:解答題

如圖,在直角坐標系xOy中,已知橢圓C:+=1(a>b>0)的離心率e=,左右兩個焦分別為F1、F2.過右焦點F2且與軸垂直的
直線與橢圓C相交M、N兩點,且|MN|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設橢圓C的左頂點為A,下頂點為B,動點P滿足=m-4,(m∈R)試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓C上.

查看答案和解析>>

同步練習冊答案