13.已知i為虛數(shù)單位,復(fù)數(shù)z=a+bi(a,b∈R)滿足z(1+i)=2i,則${log_{\frac{1}{2}}}$(a+b)=( 。
A.-1B.1C.-2D.2

分析 利用復(fù)數(shù)相等的充要條件求出a,b,即可求解${log_{\frac{1}{2}}}$(a+b).

解答 解:i為虛數(shù)單位,復(fù)數(shù)z=a+bi(a,b∈R)滿足z(1+i)=2i,
可得:(a+bi)(1+i)=2i,
即a-b+(a+b)i=2i,
可得$\left\{\begin{array}{l}{a-b=0}\\{a+b=2}\end{array}\right.$,
解得a=b=1.
則${log_{\frac{1}{2}}}$(a+b)=${log_{\frac{1}{2}}}$2=-1.
故選:A.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的相等的充要條件,對(duì)數(shù)的運(yùn)算法則的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{bn}的前n項(xiàng)和為Sn,且Sn=2bn-1(n∈N*),
(1)求b1,b2,b3,試猜想出{bn}的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明;
(2)求和:b1${C}_{n}^{0}$+b2${C}_{n}^{1}$+b3${C}_{n}^{2}$+…+bn+1${C}_{n}^{n}$
(3)求和:(log2b1)•${C}_{n}^{0}$+(log2b2)•${C}_{n}^{1}$+(log2b3)•${C}_{n}^{2}$+…(log2bn+1)•${C}_{n}^{n}$
(4)若M(n)=4+(log2bn)•bn+3,試比較M(n)與8n2-4n的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知平行四邊形ABCD中,AC=3,BD=2,則$\overrightarrow{AB}$•$\overrightarrow{AD}$=$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)全集U={x∈R|x2-3x-4≤0},A={x|x2+y2=4},B={x|y=$\sqrt{3-x}$},則A∪B={x|-1≤x≤3},∁U(A∩B)={x|2<x≤4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知x,y滿足約束條件$\left\{\begin{array}{l}x-y≥0\\ x+y≤2\\ y≥0\end{array}\right.$,則點(diǎn)P(x,y)所在區(qū)域的面積是1;若z=ax+y的最大值為4,則實(shí)數(shù)a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.當(dāng)x≥0,f(x)=x2-3x+4,f(x)為偶函數(shù),則f(x)的解析式為(  )
A.f(x)=$\left\{\begin{array}{l}{{x}^{2}+3x+4(x<0)}\\{{x}^{2}-3x+4(x≥0)}\end{array}\right.$B.f(x)=$\left\{\begin{array}{l}{{x}^{2}-3x+4(x<0)}\\{{x}^{2}+3x+4(x≥0)}\end{array}\right.$
C.f(x)=$\left\{\begin{array}{l}{{x}^{2}+3x-4(x<0)}\\{{x}^{2}-3x-4(x≥0)}\end{array}\right.$D.f(x)=$\left\{\begin{array}{l}{{x}^{2}-3x-4(x<0)}\\{{x}^{2}+3x-4(x≥0)}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在四棱柱ABCD-A1B1C1D1中,底面ABCD是邊長(zhǎng)為4的菱形,AA1=2$\sqrt{6}$,BD⊥BB1,∠BAD=60°,∠A1AC=45°,點(diǎn)E、F分別是線段AA1,BB1的中點(diǎn).
(I)求證:平面BDE∥平面A1CF;
(Ⅱ)求三棱錐B-ADE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是( 。
A.y=exB.y=sin2xC.y=-x3D.y=log${\;}_{\frac{1}{2}}}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=-lnx+$\frac{1}{2}$ax2+(1-a)x+$\frac{1}{2}$a-1(a∈R)
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若f(x)>0在x∈(0,1)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案