2.下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是( 。
A.y=exB.y=sin2xC.y=-x3D.y=log${\;}_{\frac{1}{2}}}$x

分析 判斷函數(shù)的奇偶性、單調(diào)性,即可得出結(jié)論.

解答 解:對(duì)于A,在其定義域內(nèi)是增函數(shù),非奇非偶,不正確;
對(duì)于B,在其定義域內(nèi)是奇函數(shù),不是減函數(shù),不正確;
對(duì)于C,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù),正確;
對(duì)于D,在其定義域內(nèi)是減函數(shù),非奇非偶,不正確.
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)的奇偶性、單調(diào)性,考查學(xué)生分析解決問題的能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知關(guān)于x的方程x3-ax2-x+1=0有且只有一個(gè)實(shí)根,則實(shí)數(shù)a的取值范圍為(-∞,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知i為虛數(shù)單位,復(fù)數(shù)z=a+bi(a,b∈R)滿足z(1+i)=2i,則${log_{\frac{1}{2}}}$(a+b)=( 。
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.復(fù)數(shù)(1-i)(2+2i)=( 。
A.4B.-4C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若角α的終邊過點(diǎn)(1,-2),則sin2α=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.對(duì)于任何正整數(shù)n,求下式
$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{(2n-1)(2n+1)}$的和,并用數(shù)學(xué)歸納法證明你的結(jié)果.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=sin(x$+\frac{π}{3}$)cos($\frac{π}{6}$-x)的最小正周期是(  )
A.B.πC.$\frac{π}{2}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=$\sqrt{3}$cos(4x-$\frac{π}{6}$),將函數(shù)y=f(x)的圖象上所有點(diǎn)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,再將所得函數(shù)圖象向右平移$\frac{π}{6}$個(gè)單位,得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)的一個(gè)單調(diào)遞增區(qū)間為( 。
A.[-$\frac{π}{3}$,$\frac{π}{6}$]B.[-$\frac{π}{4}$,$\frac{π}{4}$]C.[$\frac{π}{6}$,$\frac{2π}{3}$]D.[$\frac{π}{4}$,$\frac{3π}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ax3+bx2-3x(a,b∈R),f′(x)為f(x)的導(dǎo)函數(shù),若f′(x)是偶函數(shù),且f′(1)=0.
(1)求f(x)的解析式;
(2)若對(duì)于區(qū)間[1,2]上任意兩個(gè)自變量的值x1,x2,都有|g(x1)-g(x2)|≤c,其中g(shù)(x)=$\frac{1}{3}$f(x)-6lnx,求實(shí)數(shù)c的最小值;
(3)若過點(diǎn)M(2,m),能作曲線y=xf(x)的三條切線,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案