【題目】已知三次函數(shù)的導(dǎo)函數(shù)且, .
(1)求的極值;
(2)求證:對任意,都有.
【答案】(I), ;(II)見解析.
【解析】試題分析:(I)由題意,令且 所以由的單調(diào)性可知的極小值為極大值為
(II)且從而問題轉(zhuǎn)化為在
上恒成立.
試題解析:
(I)依題意得,
知在和上是減函數(shù),在上是增函數(shù)
∴,
(II)法1:易得時(shí), ,
依題意知,只要
由知,只要
令img src="http://thumb.zyjl.cn/questionBank/Upload/2017/12/29/13/326babff/SYS201712291339206689357083_DA/SYS201712291339206689357083_DA.027.png" width="169" height="27" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,則
注意到,當(dāng)時(shí), ;當(dāng)時(shí), ,
即在上是減函數(shù),在是增函數(shù),
即,綜上知對任意,都有
法2:易得時(shí), ,
由知, ,令
則
注意到,當(dāng)時(shí), ;當(dāng)時(shí), ,
即在上是減函數(shù),在是增函數(shù), ,所以,
即.
綜上知對任意,都有.
法3: 易得時(shí), ,
由知, ,令,則
令,則,知在遞增,注意到,所以, 在上是減函數(shù),在是增函數(shù),有,即
綜上知對任意,都有.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有道數(shù)學(xué)題,其中道選擇題, 道填空題,小明從中任取道題,求:
(1)所取的道題都是選擇題的概率;
(2)所取的道題不是同一種題型的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個(gè)班級中進(jìn)行教學(xué)實(shí)驗(yàn),為了比較教學(xué)效果,期中考試后,分別從兩個(gè)班級中各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計(jì),作出的莖葉圖如下圖,記成績不低于70分者為“成績優(yōu)良”.
(1)分別計(jì)算甲、乙兩班20個(gè)樣本中,化學(xué)分?jǐn)?shù)前十的平均分,并大致判斷哪種教學(xué)方式的教學(xué)效果更佳;
(2)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”?
附:參考公式: ,其中.
臨界值表:
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓(是大于的常數(shù))的左、右頂點(diǎn)分別為、,點(diǎn)是橢圓上位于軸上方的動(dòng)點(diǎn),直線、與直線分別交于、兩點(diǎn)(設(shè)直線的斜率為正數(shù)).
(Ⅰ)設(shè)直線、的斜率分別為, ,求證為定值.
(Ⅱ)求線段的長度的最小值.
(Ⅲ)判斷“”是“存在點(diǎn),使得是等邊三角形”的什么條件?(直接寫出結(jié)果)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)數(shù)學(xué)老師分別用兩種不同教學(xué)方式對入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班(人數(shù)均為20人)進(jìn)行教學(xué)(兩班的學(xué)生學(xué)習(xí)數(shù)學(xué)勤奮程度和自覺性一致),數(shù)學(xué)期終考試成績莖葉圖如下:
(1)學(xué)校規(guī)定:成績不低于75分的為優(yōu)秀,請?zhí)顚懴旅娴?/span>聯(lián)表,并判斷有多大把握認(rèn)為“成績優(yōu)秀與教學(xué)方式有關(guān)”.
附:參考公式及數(shù)據(jù)
(2)從兩個(gè)班數(shù)學(xué)成績不低于90分的同學(xué)中隨機(jī)抽取3名,設(shè)為抽取成績不低于95分同學(xué)人數(shù),求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每年的4月23日為世界讀書日,為調(diào)查某高校學(xué)生(學(xué)生很多)的讀書情況,隨機(jī)抽取了男生,女生各20人組成的一個(gè)樣本,對他們的年閱讀量(單位:本)進(jìn)行了統(tǒng)計(jì),分析得到了男生年閱讀量的頻數(shù)分布表和女生年閱讀量的頻率分布直方圖.
男生年閱讀量的頻數(shù)分布表(年閱讀量均在區(qū)間內(nèi))
(Ⅰ)根據(jù)女生年閱讀量的頻率分布直方圖估計(jì)該校女生年閱讀量的中位數(shù);
(Ⅱ)若年不小于40本為閱讀豐富,否則為閱讀不豐富,依據(jù)上述樣本研究年閱讀量與性別的關(guān)系,完成下列列聯(lián)表,并判斷是否有99%的把握認(rèn)為閱讀豐富與性別有關(guān);
(Ⅲ)在樣本中,從年閱讀量在的學(xué)生中,隨機(jī)抽取2人參加全市的征文比賽,記這2人中男生人數(shù)為,求的分布列和期望.
附: ,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,扇形AOB,圓心角AOB等于60°,半徑為2,在弧AB上有一動(dòng)點(diǎn)P,過P引平行于OB的直線和OA交于點(diǎn)C,設(shè)∠AOP=θ,當(dāng)△POC面積的最大值時(shí)θ的值為___________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,一動(dòng)圓與直線相切且與圓外切.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)若經(jīng)過定點(diǎn)的直線與曲線交于兩點(diǎn), 是線段的中點(diǎn),過作軸的平行線與曲線相交于點(diǎn),試問是否存在直線,使得,若存在,求出直線的方程,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com