精英家教網 > 高中數學 > 題目詳情
如圖,直四棱柱ABCD-A1B1C1D1的底面是
梯形,AB∥CD,AD⊥DC,CD=2,DD1=AB=1,P、Q分別是CC1、C1D1的中點。點P到直線
AD1的距離為
⑴求證:AC∥平面BPQ
⑵求二面角B-PQ-D的大小
(Ⅰ)證明見解析(Ⅱ)arctan
⑴連接CD1∵P、Q分別是CC1、C1D1的        
中點!郈D1∥PQ 故CD1∥平面BPQ
又D1Q=AB=1,D1Q∥AB,
得平行四邊形ABQD1,故AD1∥平面BPQ
∴平面ACD1∥平面BPQ
∴AC∥平面BPQ        (4分)
⑵設DD1中點為E,連EF,則PE∥CD
∵CD⊥AD,CD⊥DD1  ∴CD⊥平面ADD1
∴PE⊥平面ADD1
過E作EF⊥AD1于F,連PF。則PF⊥AD1,PF為點P到直線AD1的距離
PF=,PE="2 " ∴EF= 又D1E=,D1D=1,∴AD="1    "
取CD中點G,連BG,由AB∥DG,AB=DG得GB∥AD。∵AD⊥DC,AD⊥DD1∴AD⊥平面DCC1D1,則BG⊥平面DCC1D1
過G作GH⊥PQ于H,連BH,則BH⊥PQ,故∠BHG是二面角B-PQ-D的平面角。                                                    
由△GHQ∽△QC1P得GH=,又BG=1,得tan∠BHG=
∴二面角B-PQ-D大小為arctan
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,在正方體 
①求證:平面;
②求證:與平面的交點的重心(三角形三條中線的交點)
 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖是某直三棱柱(側棱與底面垂直)被削去上底后的直觀圖與三視圖的側視圖、俯視圖.在直觀圖中,
的中點.側視圖是直角梯形,俯視圖是等腰直角
三角形,有關數據如圖所示.
(Ⅰ)求出該幾何體的體積;
(Ⅱ)求證:EM∥平面ABC;
(Ⅲ) 試問在棱DC上是否存在點N,使NM⊥平面?若存在,確定點N的位置;
若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,直角梯形ABCE中,,D是CE的中點,點M和點N在ADE繞AD向上翻折的過程中,分別以的速度,同時從點A和點B沿AE和BD各自勻速行進,t 為行進時間,0
(1)      求直線AE與平面CDE所成的角;
(2)      求證:MN//平面CDE。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,
M為AP的中點.
(Ⅰ)求證:DM∥平面PCB;                      
(Ⅱ)求直線AD與PB所成角;
(Ⅲ)求三棱錐P-MBD的體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在正三棱錐中,
D是AC的中點,.
(1)求證:(5分)
(2)(理科)求二面角的大小。(7分)
(文科)求二面角平面角的大小。(7分)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD為矩形,PD⊥底面ABCD,E是AB上一點,PE⊥EC.
已知PD=,CD=2,AE=,
(1)求證:平面PED⊥平面PEC
(2)求二面角E-PC-D的大小。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,四棱錐中,底面是正方形,是正方形的中心,底面,的中點.

求證:(Ⅰ)∥平面;
(Ⅱ)平面平面.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=PA=a,點O、D分別是AC、PC的中點,OP⊥底面ABC。

(1)求三棱錐P-ABC的體積;
(2)求異面直線PA與BD所成角余弦值的大小。

查看答案和解析>>

同步練習冊答案