【題目】已知橢圓C以坐標軸為對稱軸,以坐標原點為對稱中心,橢圓的一個焦點為,點在橢圓上,
Ⅰ求橢圓C的方程.
Ⅱ斜率為k的直線l過點F且不與坐標軸垂直,直線l交橢圓于A、B兩點,線段AB的垂直平分線與x軸交于點G,求點G橫坐標的取值范圍.
【答案】Ⅰ .Ⅱ.
【解析】
Ⅰ設(shè)橢圓方程為,由橢圓可得,解出即可得出.
Ⅱ解法一:設(shè),,AB中點,直線AB的方程為,代入橢圓方程可得,利用根與系數(shù)的關(guān)系、中點坐標公式可得N的坐標,可得AB的垂直平分線NG的方程為,進而得出.
解法二:設(shè),,AB中點,把點A,B的坐標分別代入橢圓方程相減可得:,利用中點坐標公式、斜率計算公式可得斜率,又,可得,又在橢圓內(nèi),即,可得,利用AB的垂直平分線為,即可得出.
Ⅰ設(shè)橢圓方程為,
則
由得
由得代入得,
即,即,或
,,得,
,,
橢圓方程為.
Ⅱ解法一:設(shè),,AB中點,
直線AB的方程為,
代入,整理得,
直線AB過橢圓的左焦點F,方程有兩個不等實根,
則,,
,,
的垂直平分線NG的方程為,
時,,
,,,,
.
解法二:設(shè),,AB中點,
由,得,
斜率,
又,,
,得,
在橢圓內(nèi),即,
將代入得,
解得
,
則AB的垂直平分線為,時,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從裝有兩個紅球和兩個黑球的口袋內(nèi)任取兩個球,那么互斥而不對立的兩個事件是( )
A. “至少有一個黑球”與“都是紅球”
B. “至少有一個黑球”與“至少有一個紅球”
C. “至少有一個黑球”與“都是黑球”
D. “恰有一個黑球”與“恰有兩個黑球”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某學(xué)校進行的一次語文與歷史成績中,隨機抽取了25位考生的成績進行分析,25位考生的語文成績已經(jīng)統(tǒng)計在莖葉圖中,歷史成績?nèi)缦拢?/span>
(Ⅰ)請根據(jù)數(shù)據(jù)在莖葉圖中完成歷史成績統(tǒng)計;
(Ⅱ)請根據(jù)數(shù)據(jù)完成語文成績的頻數(shù)分布表及語文成績的頻率分布直方圖;
語文成績的頻數(shù)分布表:
語文成績分組 | [50,60) | [60,70) | [70,80) | [90,100) | [100,110) | [110,120] |
頻數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓上一點與橢圓右焦點的連線垂直于x軸,直線l:y=kx+m與橢圓C相交于A,B兩點(均不在坐標軸上).
(1)求橢圓C的標準方程;
(2)設(shè)O為坐標原點,若△AOB的面積為,試判斷直線OA與OB的斜率之積是否為定值?若是請求出,若不是請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O:經(jīng)過點,與x軸正半軸交于點B.
Ⅰ______;將結(jié)果直接填寫在答題卡的相應(yīng)位置上
Ⅱ圓O上是否存在點P,使得的面積為15?若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=2x2+(x﹣2a)|x﹣a|在區(qū)間[﹣3,1]上不是單調(diào)函數(shù),則實數(shù)a的取值范圍是( )
A.[﹣4,1]
B.[﹣3,1]
C.(﹣6,2)
D.(﹣6,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x0∈[0,2],log2(x+2)<2m;命題q:關(guān)于x的方程3x2﹣2x+m2=0有兩個相異實數(shù)根.
(1)若(¬p)∧q為真命題,求實數(shù)m的取值范圍;
(2)若p∨q為真命題,p∧q為假命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知三棱柱ABC-A1B1C1的所有棱長均為1,且AA1⊥底面ABC,則三棱錐B1-ABC1的體積為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com