15.已知拋物線C:y2=2px(p>0)上一點(diǎn)A(4,m)到其焦點(diǎn)的距離為$\frac{17}{4}$,則p的值是$\frac{1}{2}$.

分析 根據(jù)拋物線的定義得出A到準(zhǔn)線的距離為$\frac{17}{4}$,從而得出p的值.

解答 解:拋物線的準(zhǔn)線為x=-$\frac{p}{2}$,
由拋物線的定義可知A到焦點(diǎn)的距離為4+$\frac{p}{2}$=$\frac{17}{4}$,
解得p=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了拋物線的簡(jiǎn)單性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.sin75°的值為( 。
A.$\frac{{\sqrt{6}}}{4}$B.$\frac{{\sqrt{2}}}{4}$C.$\frac{{\sqrt{2}+\sqrt{6}}}{4}$D.$\frac{{\sqrt{2}-\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知A={x|x2+4x+4=0},B={x|x2+2(a+1)x+a2-1=0},其中a∈R,如果A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知{|an|}是首項(xiàng)和公差均為1的等差數(shù)列,則a2=±2,若S2=a1+a2,則S2的所有可能值組成的集合為{-3,-1,1,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.長(zhǎng)方體ABCD-A1B1C1D1的8個(gè)頂點(diǎn)都在球O的表面上,E為AB的中點(diǎn),CE=3,異面直線A1C1與CE所成角的余弦值為$\frac{5\sqrt{3}}{9}$,且四邊形ABB1A1為正方形,則球O的直徑為( 。
A.4B.$\sqrt{51}$C.4或$\sqrt{51}$D.4或5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=lnx+a(x2-3x)(a∈R)
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的極值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知如圖所示的三棱錐D-ABC的四個(gè)頂點(diǎn)均在球O的球面上,△ABC和△DBC所在的平面互相垂直,AB=3,AC=$\sqrt{3}$,BC=CD=BD=2$\sqrt{3}$,則球O的表面積為16π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x,x≤0}\\{xlnx,x>0}\end{array}\right.$ 圖象上有且僅有四個(gè)不同的點(diǎn)關(guān)于直線y=e的對(duì)稱點(diǎn)在函數(shù)g(x)=kx+2e+1的圖象上,則實(shí)數(shù)k的取值范圍為( 。
A.(1,2)B.(-1,0)C.(-2,-1)D.(-6,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x2-2lnx-2ax(a∈R).
(1)當(dāng)a=0時(shí),求函數(shù)f(x)的極值;
(2)當(dāng)x∈(1,+∞)時(shí),試討論關(guān)于x的方程f(x)+ax2=0實(shí)數(shù)根的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案