分析 證明AC⊥AB,可得△ABC的外接圓的半徑為$\sqrt{3}$,利用△ABC和△DBC所在平面相互垂直,球心在BC邊的高上,設球心到平面ABC的距離為h,則h2+3=R2=($\frac{\sqrt{3}}{2}×2\sqrt{3}$-h)2,求出球的半徑,即可求出球O的表面積.
解答 解:∵AB=3,AC=$\sqrt{3}$,BC=2$\sqrt{3}$,
∴AB2+AC2=BC2,
∴AC⊥AB,
∴△ABC的外接圓的半徑為$\sqrt{3}$,
∵△ABC和△DBC所在平面相互垂直,
∴球心在BC邊的高上,
設球心到平面ABC的距離為h,則h2+3=R2=($\frac{\sqrt{3}}{2}×2\sqrt{3}$-h)2,
∴h=1,R=2,
∴球O的表面積為4πR2=16π.
故答案為:16π.
點評 本題考查球O的表面積,考查學生的計算能力,確定球的半徑是關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com