15.已知三棱錐P-ABC,PA⊥平面ABC,AC⊥BC,PA=2,AC=BC=1,則三棱錐P-ABC外接球的體積為$\sqrt{6}π$.

分析 取PB的中點(diǎn)O,推導(dǎo)出O為外接球的球心,從而得到外接球半徑R=$\frac{\sqrt{6}}{2}$,由此能求出結(jié)果.

解答 解:取PB的中點(diǎn)O,∵PA⊥平面ABC,
∴PA⊥AB,PA⊥BC,
又BC⊥AC,PC∩AC=A,∴BC⊥平面PAC,
∴BC⊥PC,∴OA=$\frac{1}{2}PB$,OC=$\frac{1}{2}$PB,
∴OA=OB=OC=OP,
∴O為外接球的球心,
又PA=2,AC=BC=1,
∴AB=$\sqrt{2}$,PB=$\sqrt{6}$,
∴外接球半徑R=$\frac{\sqrt{6}}{2}$,
∴${V}_{球}=\frac{4}{3}π{R}^{3}=\frac{4}{3}π×(\frac{\sqrt{6}}{2})^{3}$=$\sqrt{6}$π.
故答案為:$\sqrt{6}π$.

點(diǎn)評(píng) 本題考查三棱錐外接球的體積的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(x)=x2+alog2(x2+2)+a2-2有唯一零點(diǎn),則實(shí)數(shù)a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,且AB=AC=2,O為AC的中點(diǎn),PO⊥平面ABCD,M為PD的中點(diǎn).
(Ⅰ)證明:PB∥平面ACM;
(Ⅱ)若三棱錐D-MAC的體積為$\frac{\sqrt{3}}{6}$,求平面MAC與平面PAB所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某校在高二年級(jí)實(shí)行選課走班教學(xué),學(xué)校為學(xué)生提供了多種課程,其中數(shù)學(xué)科提供5種不同層次的課程,分別稱為數(shù)學(xué)1、數(shù)學(xué)2、數(shù)學(xué)3、數(shù)學(xué)4、數(shù)學(xué)5,每個(gè)學(xué)生只能從這5種數(shù)學(xué)課程中選擇一種學(xué)習(xí),該校高二年級(jí)1800名學(xué)生的數(shù)學(xué)選課人數(shù)統(tǒng)計(jì)如表:
課程數(shù)學(xué)1數(shù)學(xué)2數(shù)學(xué)3數(shù)學(xué)4數(shù)學(xué)5合計(jì)
選課人數(shù)1805405403601801800
為了了解數(shù)學(xué)成績與學(xué)生選課情況之間的關(guān)系,用分層抽樣的方法從這1800名學(xué)生中抽取了10人進(jìn)行分析.
(1)從選出的10名學(xué)生中隨機(jī)抽取3人,求這3人中至少有2人選擇數(shù)學(xué)2的概率;
(2)從選出的10名學(xué)生中隨機(jī)抽取3人,記這3人中選擇數(shù)學(xué)2的人數(shù)為X,選擇數(shù)學(xué)1的人數(shù)為Y,設(shè)隨機(jī)變量ξ=X-Y,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)集合A={x||x-a|<2},B={x|$\frac{1}{4}$<2x<8}.
(1)若a=-1,求集合A;
(2)若A∩B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知y=f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x(1-2x).
(1)求f(0);
(2)當(dāng)x<0時(shí),求f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆安徽合肥一中高三上學(xué)期月考一數(shù)學(xué)(文)試卷(解析版) 題型:解答題

已知函數(shù).

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)討論函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆安徽合肥一中高三上學(xué)期月考一數(shù)學(xué)(理)試卷(解析版) 題型:解答題

已知函數(shù),,(為自然對(duì)數(shù)的底數(shù)),且曲線在坐標(biāo)原點(diǎn)處的切線相同.

(1)求的最小值;

(2)若時(shí),恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北正定中學(xué)高二上月考一數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

為了了解某學(xué)校1200名高中男生的身體發(fā)育情況,抽查了該校100名高中男生的體重情況.根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖,據(jù)此估計(jì)該校高中男生體重在的人數(shù)為( )

A.360 B.336 C.300 D.280

查看答案和解析>>

同步練習(xí)冊(cè)答案