A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\frac{{\sqrt{5}}}{3}$ | C. | $\frac{{\sqrt{13}}}{2}$ | D. | $\frac{{\sqrt{13}}}{3}$ |
分析 求出雙曲線的漸近線方程,設(shè)兩條漸近線的夾角為θ,由兩直線的夾角公式,可得tanθ=tan∠AOB,求出F到漸近線y=$\frac{a}$x的距離為b,即有|OB|=a,△OAB的面積可以表示為$\frac{1}{2}$•a•atanθ,結(jié)合條件可得a,b的關(guān)系,再由離心率公式即可計(jì)算得到.
解答 解:雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的漸近線方程為y=±$\frac{a}$x,
設(shè)兩條漸近線的夾角為θ,
則tanθ=tan∠AOB=$\frac{\frac{a}-(-\frac{a})}{1+\frac{a}•(-\frac{a})}$=$\frac{2ab}{{a}^{2}-^{2}}$,
設(shè)右焦點(diǎn)為F,F(xiàn)B⊥OB,則F到漸近線y=$\frac{a}$x的距離為d=$\frac{|bc|}{\sqrt{{a}^{2}+^{2}}}$=b,
即有|OB|=$\sqrt{{c}^{2}-^{2}}$=a,
則△OAB的面積可以表示為$\frac{1}{2}$•a•atanθ=$\frac{{a}^{3}b}{{a}^{2}-^{2}}$=$\frac{6{a}^{2}}{5}$,
即為6a2-5ab-6b2=0,
解得b=$\frac{2}{3}$a,即有c=$\sqrt{{a}^{2}+^{2}}$=$\frac{\sqrt{13}}{3}$a,
則e=$\frac{c}{a}$=$\frac{\sqrt{13}}{3}$.
故選:D.
點(diǎn)評 本題主要考查雙曲線的幾何性質(zhì),離心率的求法,注意運(yùn)用點(diǎn)到直線的距離公式和兩直線的夾角公式,考查運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{9}$ | B. | $\frac{2π}{9}$ | C. | $\frac{2π}{7}$ | D. | $\frac{4π}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,+∞) | B. | [4,+∞) | C. | (4,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,$\sqrt{2}$) | B. | (1,$\sqrt{10}$) | C. | ($\sqrt{2}$,$\sqrt{10}$) | D. | ($\sqrt{5}$,$\sqrt{10}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${x^2}-\frac{y^2}{3}=1$ | B. | $\frac{x^2}{4}-\frac{y^2}{12}=1$ | C. | $\frac{x^2}{3}-{y^2}=1$ | D. | $\frac{x^2}{12}-\frac{y^2}{4}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com