【題目】斜三棱柱中,底面是邊長為的正三角形,側(cè)棱長為,側(cè)棱與底面相鄰兩邊都成角,求此三棱柱的側(cè)面積和體積.

【答案】,

【解析】

先判斷斜三棱柱的三個側(cè)面的形狀,分別求出面積再相加,即為斜三棱柱的側(cè)面積;斜三棱柱的體積等于底面積乘高,因為底面三角形是邊長為的正三角形,面積易求,所以只需求出高即可,利用所給線線角的大小即可求出高,進而可求出體積.

解:(1)∵側(cè)棱與底面相鄰兩邊都成角,

∴三棱柱的三個側(cè)面中,四邊形是有一個角是,相鄰兩邊長分別為,的平行四邊形,第三個側(cè)面是邊長分別為,的矩形.

;

(2)過垂直于底面,交底面點,作點,作點,連接,,

因為平面,所以

,

所以平面,所以;同理:;

由題意,則,,

,所以,

,,為公共邊,

可得:,所以,

,因此,

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列滿足

①存在可以生成的數(shù)列是常數(shù)數(shù)列;

②“數(shù)列中存在某一項”是“數(shù)列為有窮數(shù)列”的充要條件;

③若為單調(diào)遞增數(shù)列,則的取值范圍是;

④只要,其中,則一定存在;

其中正確命題的序號為__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)數(shù)列滿足,其中A,B是兩個確定的實數(shù),

1)若,求的前n項和;

2)證明:不是等比數(shù)列;

3)若,數(shù)列中除去開始的兩項外,是否還有相等的兩項,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有流量均為的兩條河流匯合于某處后,不斷混合,它們的含沙量分別為.假設(shè)從匯合處開始,沿岸設(shè)有若干個觀測點,兩股水流在流往相鄰兩個觀測點的過程中,其混合效果相當于兩股水流在1秒內(nèi)交換的水量,其交換過程為從A股流入B的水量,經(jīng)混合后,又從B股流入A水并混合,問從第幾個觀測點開始,兩股河水的含沙量之差小于.(不考慮泥沙沉淀).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩個無窮數(shù)列分別滿足,

其中,設(shè)數(shù)列的前項和分別為,

1)若數(shù)列都為遞增數(shù)列,求數(shù)列的通項公式;

2)若數(shù)列滿足:存在唯一的正整數(shù)),使得,稱數(shù)列墜點數(shù)列

若數(shù)列“5墜點數(shù)列,求;

若數(shù)列墜點數(shù)列,數(shù)列墜點數(shù)列,是否存在正整數(shù),使得,若存在,求的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知直三棱柱的底面是直角三角形,

求證:平面

求二面角的余弦值;

求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱中,,,M、N分別是的中點.

1)求異面直線所成的角;

2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐,側(cè)棱,底面三角形為正三角形,邊長為,頂點在平面上的射影為,有,且.

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)線段上是否存在點使得⊥平面,如果存在,求的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列的前項和為,并且,,數(shù)列滿足:,,記數(shù)列的前項和為

1)求數(shù)列的通項公式及前項和公式;

2)求數(shù)列的通項公式及前項和公式

3)記集合,若的子集個數(shù)為16,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案