【題目】設(shè)數(shù)列滿足,其中A,B是兩個確定的實數(shù),
(1)若,求的前n項和;
(2)證明:不是等比數(shù)列;
(3)若,數(shù)列中除去開始的兩項外,是否還有相等的兩項,并證明你的結(jié)論.
【答案】(1)(2)證明見解析(3)沒有,理由見解析
【解析】
(1)由,數(shù)列的前n項和為一個等比數(shù)列和一個等差數(shù)列的前項和,根據(jù)等比、等差數(shù)列的前項和公式,即可求解;
(2)用反證法證明,求出,假設(shè)是等比數(shù)列,由得出關(guān)系,化簡,不滿足,所以假設(shè)不成立,即可證明結(jié)論;
(3)由,得出,且,得,設(shè),證明是遞增數(shù)列,可得結(jié)論.
(1),故前n項之和
(2),,.
若是等比數(shù)列,則
即,即.
因,故,且.
此時,,,,不滿足.
因此不是等比數(shù)列.
(3)即,即,且.
此時,.
設(shè).
,
當且僅當時等號成立,故.
即除外,的各項依次遞增.
因此中除去和之外,沒有其它的兩項相等.
科目:高中數(shù)學 來源: 題型:
【題目】隨著金融市場的發(fā)展,越來越多人選擇投資“黃金”作為理財?shù)氖侄,下面?/span>A市把黃金作為理財產(chǎn)品的投資人的年齡情況統(tǒng)計如下圖所示.
(1)求把黃金作為理財產(chǎn)品的投資者的年齡的中位數(shù);(結(jié)果用小數(shù)表示,小數(shù)點后保留兩位有效數(shù)字)
(2)現(xiàn)按照分層抽樣的方法從年齡在和的投資者中隨機抽取5人,再從這5人中隨機抽取3人進行投資調(diào)查,求恰有1人年齡在的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,墻上有一壁畫,最高點離地面4米,最低點離地面2米,觀察者從距離墻米,離地面高米的處觀賞該壁畫,設(shè)觀賞視角
(1)若問:觀察者離墻多遠時,視角最大?
(2)若當變化時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)定義已知偶函數(shù)的定義域為當且時,
(1)求并求出函數(shù)的解析式;
(2)若存在實數(shù)使得函數(shù)在上的值域為,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,、是兩個垃圾中轉(zhuǎn)站,在的正東方向千米處,的南面為居民生活區(qū).為了妥善處理生活垃圾,政府決定在的北面建一個垃圾發(fā)電廠.垃圾發(fā)電廠的選址擬滿足以下兩個要求(、、可看成三個點):①垃圾發(fā)電廠到兩個垃圾中轉(zhuǎn)站的距離與它們每天集中的生活垃圾量成反比,比例系數(shù)相同;②垃圾發(fā)電廠應盡量遠離居民區(qū)(這里參考的指標是點到直線的距離要盡可能大).現(xiàn)估測得、兩個中轉(zhuǎn)站每天集中的生活垃圾量分別約為噸和噸.設(shè).
(1)求(用的表達式表示);
(2)垃圾發(fā)電廠該如何選址才能同時滿足上述要求?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列判斷正確的是( )
A.若隨機變量服從正態(tài)分布,,則;
B.已知直線平面,直線平面,則“”是“”的充分不必要條件;
C.若隨機變量服從二項分布:,則;
D.是的充分不必要條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù).
(1)當時,對于一切,函數(shù)在區(qū)間內(nèi)總存在唯一零點,求的取值范圍;
(2)若區(qū)間上是單調(diào)函數(shù),求的取值范圍;
(3)當,時,函數(shù)在區(qū)間內(nèi)的零點為,判斷數(shù)列,,…,,…的增減性,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一次猜獎游戲中,1,2,3,4四扇門里擺放了,,,四件獎品(每扇門里僅放一件).甲同學說:1號門里是,3號門里是;乙同學說:2號門里是,3號門里是;丙同學說:4號門里是,2號門里是;丁同學說:4號門里是,3號門里是.如果他們每人都猜對了一半,那么4號門里是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com