( 本題滿分14分)已知函數(shù)對任意實數(shù)均有,其中常數(shù)k為負數(shù),且在區(qū)間上有表達式
(1)求的值;
(2)寫出上的表達式,并討論函數(shù)上的單調(diào)性.

(1)  (2)

解析試題分析:(1)


(2)當時,
………….5分
時,
………….7分
時,
……9分
.....................11分

考點:函數(shù)求值求解析式
點評:首先將x的值或范圍轉(zhuǎn)化到已知條件給定的區(qū)間內(nèi),而后代入相應的函數(shù)式求解

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(12分)我們把同時滿足下列兩個性質(zhì)的函數(shù)稱為“和諧函數(shù)” :
①函數(shù)在整個定義域上是單調(diào)增函數(shù)或單調(diào)減函數(shù);
②在函數(shù)的定義域內(nèi)存在區(qū)間,使得函數(shù)在區(qū)間上的值域為.
⑴已知冪函數(shù)的圖像經(jīng)過點,判斷是否是和諧函數(shù)?
⑵判斷函數(shù)是否是和諧函數(shù)?
⑶若函數(shù)是和諧函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)在點處的切線方程為
(I)求,的值;
(II)對函數(shù)定義域內(nèi)的任一個實數(shù)恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知是定義在[-1,1]上的奇函數(shù),當,且時有.
(1)判斷函數(shù)的單調(diào)性,并給予證明;
(2)若對所有恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分13分)已知函數(shù)
(1) 求函數(shù)的極值;
(2)求證:當時,
(3)如果,且,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
定義在上的偶函數(shù),已知當時的解析式
(Ⅰ)寫出上的解析式;
(Ⅱ)求上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知二次函數(shù)的最小值為1,且
(1)求的解析式;
(2)若在區(qū)間上不單調(diào),求實數(shù)的取值范圍;
(3)在區(qū)間上,的圖象恒在的圖象上方,試確定實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)=
(1)證明:上是增函數(shù);(2)求上的值域。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)
(Ⅰ)若在定義域內(nèi)存在,使不等式能成立,求實數(shù)的最小值;
(Ⅱ)若函數(shù)在區(qū)間上恰有兩個不同的零點,求實數(shù)的取值范圍。

查看答案和解析>>

同步練習冊答案