分析 利用定積分表示面積,求出其原函數(shù),即可求出面積.
解答 解:(Ⅰ)$\int_{-\frac{π}{3}}^{\frac{π}{3}}{cosxdx=sinx\left|\begin{array}{l}\frac{π}{3}\\-\frac{π}{3}\end{array}\right.}$=$sin\frac{π}{3}-sin(-\frac{π}{3})=\sqrt{3}$…(5分)
(Ⅱ)由$\left\{\begin{array}{l}y=x-4\\ y=\sqrt{2x}\end{array}\right.$得,$\sqrt{2x}=x-4$,即2x=(x-4)2,得x=4,x=2(舍)
所以兩曲線的交點(diǎn)坐標(biāo)為(8,4),直線y=x-4與x軸的交點(diǎn)為(4,0)…(7分)
所以$S=\int_0^4{\sqrt{2x}}dx+\int_4^8{[\sqrt{2x}-(x-4)]}$=$\frac{{2\sqrt{2}}}{3}{x^{\frac{3}{2}}}\left|\begin{array}{l}4\\ 0\end{array}\right.+\frac{{2\sqrt{2}}}{3}{x^{\frac{3}{2}}}\left|\begin{array}{l}8\\ 4\end{array}\right.-\frac{1}{2}{(x-4)^2}\left|\begin{array}{l}8\\ 4\end{array}\right.$=$\frac{40}{3}$…(12分)
點(diǎn)評(píng) 本題考查利用定積分求面積,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-$\frac{1}{2}$]∪[2,+∞) | B. | [{-$\frac{1}{2}$,2}] | C. | [-2,$\frac{1}{2}$] | D. | (-∞,-2]∪[$\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=±$\sqrt{2}$x | B. | y=±2x | C. | y=±$\frac{\sqrt{2}}{2}$x | D. | y=±$\frac{1}{2}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[0,\frac{π}{6}]$ | B. | $[0,\frac{π}{3}]$ | C. | $[0,\frac{π}{2}]$ | D. | $[0,\frac{2π}{3}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com