19.在平面直角坐標(biāo)系xOy中,已知點A(2,0),直線l:x+y-5=0,點B(x,y)是圓C:x2+2x+y2-1=0上的動點,AD⊥l,BE⊥l,垂足分別為D,E,則線段DE的最大值是( 。
A.$\sqrt{2}$B.$\frac{{3\sqrt{2}}}{2}$C.$2\sqrt{2}$D.$\frac{{5\sqrt{2}}}{2}$

分析 由題意作出圖象,結(jié)合題意可知當(dāng)直線為AD時會使得要求的距離最大,然后把問題轉(zhuǎn)化為點C(-1,0)到直線x-y-2=0的距離,即可求解.

解答 解:圓C:x2+2x+y2-1=0,即(x+1)2+y2=2.
如圖,過點B作直線AD的垂線,交AD于點F,則DE=BF,所以此問題轉(zhuǎn)化為求圓上的點B到直線AD的距離的最大值,即圓心到直線x-y-2=0的距離加半徑.
易知直線AD的方程是x-y-2=0,點C(-1,0)到直線x-y-2=0的距離是$\frac{{|{-1-2}|}}{{\sqrt{2}}}=\frac{{3\sqrt{2}}}{2}$,
所以DE的最大值是$\frac{{3\sqrt{2}}}{2}$+$\sqrt{2}$=$\frac{{5\sqrt{2}}}{2}$.
故選D.

點評 本題為距離的最值的求解,涉及直線與圓的位置關(guān)系,點到直線的距離公式以及平行線間的距離,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)=x2+ax-lnx,其中實數(shù)a為常數(shù).
(1)若a=2,求曲線y=f(x)在點P(1,f(1))處的切線方程;
(2)若函數(shù)g(x)=$\frac{f(x)}{{e}^{x}}$在區(qū)間(0,1]上是減函數(shù),其中e為自然對數(shù)的底數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績和物理成績之間的關(guān)系,隨機(jī)抽取高二年級20名學(xué)生某次考試成績(百分制)如表所示:
 序號 1 2 3 4 5 6 7 8 9 10 1112 13  14 1516  17 1819 20 
 數(shù)學(xué)成績 9575  80 94 92 65 67 84 98 7167 93  64 78 77 90 57 83 7283 
 物理成績 90 63 7287  91 71 58 82 93 81 77 82 48 85 69 91 6184  7886 
若數(shù)學(xué)成績90分(含90分)以上為優(yōu)秀,物理成績85(含85分)以上為優(yōu)秀.有多少把握認(rèn)為學(xué)生的學(xué)生成績與物理成績有關(guān)系( 。
參考數(shù)據(jù)公式:①獨立性檢驗臨界值表
 P(K2≥k0 0.50 0.40 0.25 015. 0.10 0.05 0.0250.010 0.005  0001
 k0 0.4550.708  1.323 2.072 2.706 3.841 5.024 6356. 7.879 10.828
②獨立性檢驗隨機(jī)變量K2的值的計算公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.
A.99.9%B.99.5%C.97.5%D.95%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知拋物線E:y2=2px(p>0)的準(zhǔn)線與x軸交于M,過點M作⊙C:(x-2)2+y2=1的兩條切線,切點為A,B,|AB|=$\frac{{4\sqrt{2}}}{3}$.
(1)求拋物線E的方程;
(2)過拋物線E上一點N作⊙C的兩條切線,切點分別為P,Q,若$\overrightarrow{OP}$=λ$\overrightarrow{OQ}$,求點N的坐標(biāo)及|PQ|長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在平行四邊形ABCD中,$\overrightarrow{AC}•\overrightarrow{CB}$=0,$2{\overrightarrow{BC}^2}+{\overrightarrow{AC}^2}$-4=0,若將其沿AC折成直二面角D-AC-B,則三棱錐D-AC-B的外接球的表面積為4π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知A,B是圓O:x2+y2=4上的兩個動點,P是線段A,B上的動點,當(dāng)△AOB的面積最大時,$\overrightarrow{AO}•\overrightarrow{AP}-{\overrightarrow{AP}^2}$的最大值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=|log2|x-1||,且關(guān)于x的方程[f(x)]2+af(x)+2b=0有6個不同的實數(shù)根,若最小的實數(shù)根為-3,則a+b的值為(  )
A.-2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,AD⊥DC,平面PAD⊥底面ABCD,Q為AD中點,M是棱PC的中點.△PAD是邊長為2的正三角形,BC=1,CD=$\sqrt{3}$.
(1)求證:平面PQB⊥平面PAD;
(2)求二面角M-BQ-C平面角θ的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年安徽六安一中高一上國慶作業(yè)二數(shù)學(xué)試卷(解析版) 題型:選擇題

函數(shù)為偶函數(shù),且在單調(diào)遞增,則的解集為( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊答案