如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1,
M是線段EF的中點.
(1)求證:AM∥平面BDE
(2)求證:DM⊥平面BEF.
考點:直線與平面平行的判定,直線與平面垂直的判定
專題:空間位置關系與距離
分析:(1)連結BD,BD∩AC=O,連結EO,由已知得四邊形EOAM為平行四邊形,由此能證明AM∥平面BDE.
(2)由AB=
2
,AF=1,得DF=DE=
3
,從而DM⊥EF,連結BM,得DM⊥BM,由此能證明DM⊥平面BEF.
解答: (1)證明:連結BD,BD∩AC=O,連結EO,
∵E,M為中點,且ACEF為矩形,∴EM∥OA,EM=OA,
∴四邊形EOAM為平行四邊形,∴AM=EO,
∵EO?平面BDE,AM?平面BDE,
∴AM∥平面BDE.
(2)證明:由AB=
2
,AF=1,得DF=DE=
3
,
∵M是線段EF的中點,∴DM⊥EF,
連結BM,得BM=DM=
2
,又BD=2,
∴DM⊥BM,
又BM∩EF=M,∴DM⊥平面BEF.
點評:本題考查線面平行、線面垂直的證明,是中檔題,解題時要注意空間中線線、線面、面面間的位置關系和性質的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在?ABCD中,
AB
=
a
,
AD
=
b
,E、F分別是AB、BC的中點,G點使
DG
=
1
3
DC
,試以
a
,
b
為基底表示向量
AF
EG

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,CC1=4,M是棱CC1上的一點.
(1)求證:BC⊥AM;
(2)若N是AB的中點,且CN∥平面AB1M,求CM的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為:
3
3
,直線l:y=x+2與以原點為圓心,橢圓的短半軸為半徑的圓O相切.
(1)求橢圓C的方程;
(2)設橢圓C與曲線|y|=kx(k>0)的交點為A,B,求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=-x2-2x+5的值域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,點E是SD的中點.
(1)求證:SB∥平面EAC;
(2)求點D到平面EAC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AC=BC=CC1,AC⊥BC,點D是AB的中點.
(Ⅰ)求證:CD⊥平面A1ABB1; 
(Ⅱ)求證:AC1∥平面CDB1;
(Ⅲ)線段AB上是否存在點M,使得A1M⊥平面CDB1?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

二次函數(shù)的圖象與x軸的兩個交點(-2,0),(4,0),且過點(1,9),則解析式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

18
=sinφ,則φ=
 

查看答案和解析>>

同步練習冊答案