在△ABC中,若a=2,b+c=7,cosB=-
1
4
,求△ABC的面積.
考點(diǎn):余弦定理,正弦定理
專題:解三角形
分析:由余弦定理可得:b2=a2+c2-2accosB,化為7b-8c=4,與b+c=7聯(lián)立可得b,c,再利用三角形的面積計(jì)算公式即可得出.
解答: 解:由余弦定理可得:b2=a2+c2-2accosB,
∴(b+c)(b-c)=4-4c×(-
1
4
)
,
化為7b-8c=4,
聯(lián)立
b+c=7
7b-8c=4
,解得b=4,c=3.
∵cosB=-
1
4
,B∈(0,π),
∴sinB=
15
4

∴S△ABC=
1
2
acsinB
=
1
2
×2×3×
15
4
=
3
15
4
點(diǎn)評(píng):本題考查了余弦定理、三角形的面積計(jì)算公式,考查了計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

記A=logsin1cos1,B=logsin1tan1,C=logcos1sin1,D=logcos1tan1,則A、B、C、D四個(gè)數(shù)中最大數(shù)與最小值之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為坐標(biāo)原點(diǎn),向量
OA
=(1,0),
OB
=(-1,2).若平面區(qū)域D由所有滿足
OC
OA
OB
(-2≤λ≤2,-1≤μ≤1)的點(diǎn)C組成,則能夠把區(qū)域D的周長(zhǎng)和面積同時(shí)分為相等的兩部分的曲線是( 。
A、y=
1
x
B、y=x+cosx
C、y=ln
5-x
5+x
D、y=ex+e-x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知某圓的極坐標(biāo)方程為:p2-4pcosθ+2=0
(1)將極坐標(biāo)方程化為普通方程
(2)若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若sinA:sinB:sinC=3:4:5,則cosB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求an=
n+2
3n
的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,設(shè)a+c=2b,則tan
A
2
•tan
C
2
的值為(參考公式:sinA+sinC=2sin
A+C
2
cos
A-C
2
)( 。
A、2
B、
1
2
C、3
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,y>0,x+y=1,則
1
x+1
+
1
y+1
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2px(p>0)的焦點(diǎn)F到雙曲線x2-
y2
3
=1的漸近線的距離為
3
,過焦點(diǎn)F斜率為k的直線與拋物線C交于A、B兩點(diǎn),且
AF
=2
FB
,則|k|=( 。
A、2
2
B、
2
2
3
C、
2
4
D、
1
3

查看答案和解析>>

同步練習(xí)冊(cè)答案