【題目】已知拋物線上一點,點,是拋物線上異于的兩動點,且,則點到直線的距離的最大值是______.
【答案】
【解析】
根據(jù)題意設(shè)出,的坐標(biāo)和直線的方程,將點坐標(biāo)代入拋物線方程,聯(lián)立直線與拋物線,結(jié)合平面向量數(shù)量積的坐標(biāo)運算,由韋達定理即可求得直線的方程中的等量關(guān)系式.進而求得直線所過定點的坐標(biāo),結(jié)合點與直線的關(guān)系,即可知當(dāng)與直線垂直時點到直線的距離最大,由兩點間距離公式即可求解.
拋物線,,是拋物線上異于的兩動點
設(shè)
設(shè)直線的方程為
則化簡可得
所以,
因為
則
因為
所以
化簡可得
所以或
展開化簡可得或
代入可得
或
即或
因為恒成立
當(dāng)時,代入可得,當(dāng)時不恒成立,所以舍去
當(dāng)時,代入可得恒成立
所以
則直線的方程為
即
所以直線過定點
當(dāng)與直線垂直時,點M到直線的距離最大,且最大距離為
故答案為:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為鼓勵家校互動,與某手機通訊商合作,為教師辦理流量套餐.為了解該校教師手機流量使用情況,通過抽樣,得到位教師近年每人手機月平均使用流量(單位:)的數(shù)據(jù),其頻率分布直方圖如下:
若將每位教師的手機月平均使用流量分別視為其手機月使用流量,并將頻率為概率,回答以下問題.
(Ⅰ) 從該校教師中隨機抽取人,求這人中至多有人月使用流量不超過 的概率;
(Ⅱ) 現(xiàn)該通訊商推出三款流量套餐,詳情如下:
套餐名稱 | 月套餐費(單位:元) | 月套餐流量(單位:) |
這三款套餐都有如下附加條款:套餐費月初一次性收取,手機使用一旦超出套餐流量,系統(tǒng)就自動幫用戶充值 流量,資費元;如果又超出充值流量,系統(tǒng)就再次自動幫用戶充值 流量,資費元/次,依次類推,如果當(dāng)月流量有剩余,系統(tǒng)將自動清零,無法轉(zhuǎn)入次月使用.
學(xué)校欲訂購其中一款流量套餐,為教師支付月套餐費,并承擔(dān)系統(tǒng)自動充值的流量資費的,其余部分由教師個人承擔(dān),問學(xué)校訂購哪一款套餐最經(jīng)濟?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的數(shù)表為“森德拉姆篩”(森德拉姆,東印度學(xué)者),其特點是每行每列都成等差數(shù)列.在此表中,數(shù)字“121”出現(xiàn)的次數(shù)為___________.
2 | 3 | 4 | 5 | 6 | 7 | …… |
3 | 5 | 7 | 9 | 11 | 13 | …… |
4 | 7 | 10 | 13 | 16 | 19 | …… |
5 | 9 | 13 | 17 | 21 | 25 | …… |
6 | 11 | 16 | 21 | 26 | 31 | …… |
7 | 13 | 19 | 25 | 31 | 37 | …… |
…… | …… | …… | …… | …… | …… | …… |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題中真命題是
A. 同垂直于一直線的兩條直線互相平行
B. 底面各邊相等,側(cè)面都是矩形的四棱柱是正四棱柱
C. 過空間任一點與兩條異面直線都垂直的直線有且只有一條
D. 過球面上任意兩點的大圓有且只有一個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一商家誠邀甲、乙兩名圍棋高手進行一場網(wǎng)絡(luò)國棋比賽,每比賽一局商家要向每名棋手支付2000元對局費,同時商家每局從轉(zhuǎn)讓網(wǎng)絡(luò)轉(zhuǎn)播權(quán)及廣告宣傳中獲利12100元,從兩名棋手以往比賽中得知,甲每局獲勝的概率為,乙每局獲勝的概率為,兩名棋手約定:最多下五局,先連勝兩局者獲勝,比賽結(jié)束,比賽結(jié)束后,商家為獲勝者頒發(fā)5000元的獎金,若沒有決出獲勝者則各頒發(fā)2500元.
(1)求下完五局且甲獲勝的概率是多少;
(2)求商家從這場網(wǎng)絡(luò)棋賽中獲得的收益的數(shù)學(xué)期望是多少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,,四邊形和四邊形是兩個全等的等腰梯形.
(1)求證:四邊形為矩形;
(2)若平面平面,,,,求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
在極坐標(biāo)系中,為極點,點,點.
(1)以極點為坐標(biāo)原點,極軸為軸的正半軸建立平面直角坐標(biāo)系,求經(jīng)過,,三點的圓的直角坐標(biāo)方程;
(2)在(1)的條件下,圓的極坐標(biāo)方程為,若圓與圓相切,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時,
①求函數(shù)在上的最大值和最小值;
②若存在,,…,,使得成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合,集合是集合S的一個含有8個元素的子集.
(1)當(dāng)時,設(shè),
①寫出方程的解();
②若方程至少有三組不同的解,寫出k的所有可能取值;
(2)證明:對任意一個X,存在正整數(shù)k,使得方程至少有三組不同的解.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com