【題目】
在極坐標系中,為極點,點,點.
(1)以極點為坐標原點,極軸為軸的正半軸建立平面直角坐標系,求經過,,三點的圓的直角坐標方程;
(2)在(1)的條件下,圓的極坐標方程為,若圓與圓相切,求實數的值.
科目:高中數學 來源: 題型:
【題目】通過隨機詢問110名性別不同的大學生是否愛好某項運動,得到如下的列聯(lián)表:
男 | 女 | 合計 | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
合計 | 60 | 50 | 110 |
由K2=,
附表:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
參照附表,得到的正確結論是( )
A.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關”
B.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別無關”
C.有99%以上的把握認為“愛好該項運動與性別有關”
D.有99%以上的把握認為“愛好該項運動與性別無關”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點恰好是橢圓的右焦點.
(1)求實數的值及拋物線的準線方程;
(2)過點任作兩條互相垂直的直線分別交拋物線于、和、點,求兩條弦的弦長之和的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線:,點為拋物線的焦點,焦點到直線的距離為,焦點到拋物線的準線的距離為,且.
(1)求拋物線的標準方程;
(2)若在軸上存在點,過點的直線分別與拋物線相交于,兩點,且為定值,求點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著互聯(lián)網金融的不斷發(fā)展,很多互聯(lián)網公司推出余額增值服務產品和活期資金管理服務產品,如螞蟻金服旗下的“余額寶”,騰訊旗下的“財富通”,京東旗下“京東小金庫”.為了調查廣大市民理財產品的選擇情況,隨機抽取1100名使用理財產品的市民,按照使用理財產品的情況統(tǒng)計得到如下頻數分布表:
分組 | 頻數(單位:名) |
使用“余額寶” | |
使用“財富通” | |
使用“京東小金庫” | 40 |
使用其他理財產品 | 60 |
合計 | 1100 |
已知這1100名市民中,使用“余額寶”的人比使用“財富通”的人多200名.
(1)求頻數分布表中,的值;
(2)已知2018年“余額寶”的平均年化收益率為,“財富通”的平均年化收益率為,“京東小金庫”的平均年化收益率為,有3名市民,每個人理財的資金有10000元,且分別存入“余額寶”“財富通”“京東小金庫”,求這3名市民2018年理財的平均年化收益率;
(3)若在1100名使用理財產品的市民中,從使用“余額寶”和使用“財富通”的市民中按分組用分層抽樣方法共抽取5人,然后從這5人中隨機選取2人,求“這2人都使用‘財富通’”的概率.
注:平均年化收益率,也就是我們所熟知的利率,理財產品“平均年化收益率為”即將100元錢存入某理財產品,一年可以獲得3元利息.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的焦距為,橢圓上任意一點到橢圓兩個焦點的距離之和為6.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線 與橢圓交于兩點,點(0,1),且=,求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】檳榔原產于馬來西亞,中國主要分布在云南、海南及臺灣等熱帶地區(qū),亞洲熱帶地區(qū)廣泛栽培.檳榔是重要的中藥材,南方一些少數民族還有將果實作為一種咀嚼嗜好品,但其被世界衛(wèi)生組織國際癌癥研究機構列為致癌物清單Ⅰ類致癌物.云南某民族中學為了解,兩個少數民族班的學生咀嚼檳榔的情況,分別從這兩個班中隨機抽取5名學生進行調查,經他們平均每周咀嚼檳榔的顆數作為樣本,繪制成如圖所示的莖葉圖(圖中的莖表示十位數字,葉表示個位數字).
(1)你能否估計哪個班的學生平均每周咀嚼檳榔的顆數較多?
(2)在被抽取的10名學生中,從平均每周咀嚼檳榔的顆數不低于20顆的學生中隨機抽取3名學生,求抽到班學生人數的分布列和數學期望.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com