13.已知角θ的頂點與原點重合,始邊與x軸非負半軸重合,終邊過點P(-1,2),則cosθ=( 。
A.-1B.2C.$-\frac{{\sqrt{5}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

分析 根據(jù)三角函數(shù)的定義,直接求出cosθ

解答 解:終邊過點P(-1,2),
∴|OP|=$\sqrt{5}$,
∴cosθ=$\frac{x}{|OP|}$=$\frac{-1}{\sqrt{5}}$,
故選:C

點評 本題考查任意角的三角函數(shù)的定義,終邊相同的角,考查計算能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)復(fù)數(shù)z=3+4i(i是虛數(shù)單位),則$\overline{z}$•z=25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.雙曲線的中心在原點,實軸在x軸上,與圓x2+y2=5交于點P(2,-1),如果圓在點P的切線平行于雙曲線的左頂點與虛軸的一個端點的連線,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)是R上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f'(x),若對任意實數(shù)x,都有f(x)>f'(x),且f(x)-1為奇函數(shù),則不等式f(x)<ex的解集為( 。
A.(-∞,0)B.(-∞,e4C.(e4,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在等比數(shù)列{an}中,a1=-2,a4=-54,則數(shù)列{an}的前n項和Sn=1-3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=2sin(2ωx+\frac{π}{6})+1$(其中0<ω<2),若直線$x=\frac{π}{6}$是函數(shù)f(x)圖象的一條對稱軸.
(1)求ω及f(x)的最小正周期;
(2)求函數(shù)f(x)在$x∈[{-\frac{π}{2},\frac{π}{2}}]$上的單調(diào)遞減區(qū)間.
(3)若函數(shù)g(x)=f(x)+a在區(qū)間$[{0,\frac{π}{2}}]$上的圖象與x軸沒有交點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)數(shù)列{an}的前n項和為Sn,且2an+Sn=-1.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若實數(shù)λ滿足$\frac{1}{{{{({S_n}+1)}^2}}}-\frac{1}{a_n^2}≥\frac{λ}{{{a_n}{a_{n+1}}}}$,求λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.點M的直角坐標(biāo)是$(-\sqrt{3},-1)$,則點M的極坐標(biāo)為(  )
A.$(2,\frac{5π}{6})$B.$(2,\frac{7π}{6})$C.$(2,\frac{11π}{6})$D.$(2,\frac{π}{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.總體由編號為01,02,03,…,49,50的50個個體組成,利用隨機數(shù)表(以下選取了隨機數(shù)表中的第1行和第2行)選取5個個體,選取方法是從隨機數(shù)表第1行的第9列和第10列數(shù)字開始由左向右讀取,則選出來的第4個個體的編號為(  )
78 16 65 72 08  02 63 14 07 02  43 69 69 38 74
32 04 94 23 49  55 80 20 36 35  48 69 97 28 01
A.05B.09C.07D.20

查看答案和解析>>

同步練習(xí)冊答案