A. | (-∞,1] | B. | (-∞,0) | C. | (-3,1] | D. | (-1,+∞) |
分析 令f′(x)≥0在[1,e]上恒成立,對b進行討論得出b的范圍.
解答 解:f′(x)=lnx-$\frac{x}$+1,
∵f(x)在[1,e]上單調(diào)遞增,∴f′(x)≥0在[1,e]上恒成立,
若b≤0,顯然f′(x)>0恒成立,符合題意,
若b>0,則f′′(x)=$\frac{1}{x}$+$\frac{{x}^{2}}$>0,
∴f′(x)=lnx-$\frac{x}$+1在[1,e]上是增函數(shù),
∴f′(x)≥f′(1)≥0,即-b+1≥0,解得0<b≤1,
綜上,b的范圍是(-∞,1].
故選:A.
點評 本題考查了函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,函數(shù)的最值計算,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | an=$\frac{2(n-1)}{2n-1}$ | B. | an=$\frac{n-1}{2n+1}$ | C. | an=$\frac{n-1}{n+1}$ | D. | an=$\frac{2n}{3n+1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ¬p為:?a∈(-∞,-2),曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(1,f(1))處切線的傾斜角θ>$\frac{π}{4}$ | |
B. | ¬p為:?a∈(-∞,-2),曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(1,f(1))處切線的傾斜角$θ>\frac{π}{4}$ | |
C. | ¬p:?a∈[2,+∞),曲線f(x)=$\frac{{x}^{2}+a}{x+1}$在點(1,f(1))處切線的傾斜角θ≤$\frac{π}{4}$ | |
D. | ¬p是假命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com