【題目】已知 =(2,﹣ ), =(sin2( +x),cos2x).令f(x)= ﹣1,x∈R,函數(shù)g(x)=f(x+φ),φ∈(0, )的圖象關(guān)于(﹣ ,0)對稱. (Ⅰ) 求f(x)的解析式,并求φ的值;
(Ⅱ)在△ABC中sinC+cosC=1﹣ ,求g(B)的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市有A、B兩家羽毛球球俱樂部,兩家設(shè)備和服務(wù)都很好,但收費(fèi)方式不同,A俱樂部每塊場地每小時收費(fèi)6元;B俱樂部按月計(jì)費(fèi),一個月中20小時以內(nèi)含20小時每塊場地收費(fèi)90元,超過20小時的部分,每塊場地每小時2元,某企業(yè)準(zhǔn)備下個月從這兩家俱樂部中的一家租用一塊場地開展活動,其活動時間不少于12小時,也不超過30小時.
設(shè)在A俱樂部租一塊場地開展活動x小時的收費(fèi)為元,在B俱樂部租一塊場地開展活動x小時的收費(fèi)為元,試求與的解析式;
問該企業(yè)選擇哪家俱樂部比較合算,為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ,函數(shù)的圖象在點(diǎn)處的切線平行于軸.
(1)求的值;
(2)求函數(shù)的極小值;
(3)設(shè)斜率為的直線與函數(shù)的圖象交于兩點(diǎn), , ,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校餐廳新推出A、B、C、D四款套餐,某一天四款套餐銷售情況的條形圖如下.為了了解同學(xué)對新推出的四款套餐的評價(jià),對每位同學(xué)都進(jìn)行了問卷調(diào)查,然后用分層抽樣的方法從調(diào)查問卷中抽取20份進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如下面表格所示:
滿意 | 一般 | 不滿意 | |
A套餐 | 50% | 25% | 25% |
B套餐 | 80% | 0 | 20% |
C套餐 | 50% | 50% | 0 |
D套餐 | 40% | 20% | 40% |
(Ⅰ)若同學(xué)甲選擇的是A款套餐,求甲的調(diào)查問卷被選中的概率;
(Ⅱ)若想從調(diào)查問卷被選中且填寫不滿意的同學(xué)中再選出2人進(jìn)行面談,求這兩人中至少有一人選擇的是D款套餐的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的圓心在直線上,且與直線相切于點(diǎn)
(1)求圓C的方程;
(2)是否存在過點(diǎn)的直線與圓C交于兩點(diǎn),且的面積為(O為坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體ABCDFE中,四邊形ABCD是矩形,AB∥EF,AB=2EF,∠EAB=90°,平面ABFE⊥平面ABCD.
(1)若G點(diǎn)是DC的中點(diǎn),求證:FG∥平面AED.
(2)求證:平面DAF⊥平面BAF.
(3)若AE=AD=1,AB=2,求三棱錐D-AFC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】綜合題。
(1)設(shè)不等式(x﹣a)(x+a﹣2)<0的解集為N, ,若x∈N是x∈M的必要條件,求a的取值范圍.
(2)已知命題:“x∈{x|﹣1<x<1},使等式x2﹣x﹣m=0成立”是真命題,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)投入81萬元經(jīng)銷某產(chǎn)品,經(jīng)銷時間共60個月,市場調(diào)研表明,該企業(yè)在經(jīng)銷這個產(chǎn)品期間第x個月的利潤 (單位:萬元),為了獲得更多的利潤,企業(yè)將每月獲得的利潤投入到次月的經(jīng)營中,記第x個月的當(dāng)月利潤率 ,例如: .
(1)求g(10);
(2)求第x個月的當(dāng)月利潤率g(x);
(3)該企業(yè)經(jīng)銷此產(chǎn)品期間,哪個月的當(dāng)月利潤率最大,并求該月的當(dāng)月利潤率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時,求函數(shù)的極小值;
(2)若函數(shù)在有個零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)在(2)的條件下,若函數(shù)在的三個零點(diǎn)分別為,求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com