【題目】已知甲、乙兩名工人在同樣條件下每天各生產(chǎn)100件產(chǎn)品,且每生產(chǎn)1件正品可獲利20元,生產(chǎn)1件次品損失30元,甲、乙兩名工人100天中出現(xiàn)次品件數(shù)的情況如表所示.

甲每天生產(chǎn)的次品數(shù)/件

0

1

2

3

4

對應的天數(shù)/天

40

20

20

10

10

乙每天生產(chǎn)的次品數(shù)/件

0

1

2

3

對應的天數(shù)/天

30

25

25

20

(1)將甲每天生產(chǎn)的次品數(shù)記為(單位:件),日利潤記為(單位:元),寫出的函數(shù)關系式;

(2)按這100天統(tǒng)計的數(shù)據(jù),分別求甲、乙兩名工人的平均日利潤.

【答案】(1)見解析;(2)見解析

【解析】

(1)根據(jù)題設條件可得的函數(shù)關系式為,其中,.

(2)利用(1)求出各自的總利潤后可得各自的平均日利潤.

(1)因為甲每天生產(chǎn)的次品數(shù)為,所以損失元,

則其生產(chǎn)的正品數(shù)為,獲得的利潤為元,

因而的函數(shù)關系式為 ,其中,.

(2)這100天中甲工人的總利潤為 元,

因而平均日利潤為元.

這100天中乙工人的總利潤為元.

因而平均日利潤為元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】一平面上有32個點其中無三點共線證明在這32個點中至少能找到2135個四點組,形成凸四邊形的四個頂點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】南昌市在2018年召開了全球VR產(chǎn)業(yè)大會,為了增強對青少年VR知識的普及,某中學舉行了一次普及VR知識講座,并從參加講座的男生中隨機抽取了50人,女生中隨機抽取了70人參加VR知識測試,成績分成優(yōu)秀和非優(yōu)秀兩類,統(tǒng)計兩類成績?nèi)藬?shù)得到如下的列聯(lián)表:

優(yōu)秀

非優(yōu)秀

總計

男生

35

50

女生

30

70

總計

45

75

120

1)確定,的值;

2)試判斷能否有90%的把握認為VR知識測試成績優(yōu)秀與否與性別有關;

附:

0.25

0.15

0.10

0.05

0.025

0.010

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調(diào)查了500位老年人,結果如下:

需要

40

30

不需要

160

270

(1)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例。

(2)能否在犯錯誤的概率不超過百分之一的前提下認為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關?

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,曲線的極坐標方程為,直線的極坐標方程為,設交于兩點,中點為,的垂直平分線交、.為坐標原點,極軸為軸的正半軸建立直角坐標系.

1)求的直角坐標方程與點的直角坐標;

2)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為保證樹苗的質量,林業(yè)管理部門在每年3月12日植樹節(jié)前都對樹苗進行檢測,現(xiàn)從甲、乙兩種樹苗中各抽測了10株樹苗的高度單位長度:,其莖葉圖如圖所示,則下列描述正確的是( )

A. 甲種樹苗的平均高度大于乙種樹苗的平均高度,甲種樹苗比乙種樹苗長得整齊

B. 甲種樹苗的平均高度大于乙種樹苗的平均高度,乙種樹苗比甲種樹苗長得整齊

C. 乙種樹苗的平均高度大于甲種樹苗的平均高度,乙種樹苗比甲種樹苗長得整齊

D. 乙種樹苗的平均高度大于甲種樹苗的平均高度,甲種樹苗比乙種樹苗長得整齊

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體中,點E是棱的中點,點F是線段上的一個動點.有以下三個命題:

①異面直線所成的角是定值;

②三棱錐的體積是定值;

③直線與平面所成的角是定值.

其中真命題的個數(shù)是( )

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種出口產(chǎn)品的關稅稅率t.市場價格x(單位:千元)與市場供應量p(單位:萬件)之間近似滿足關系式:,其中k.b均為常數(shù).當關稅稅率為75%時,若市場價格為5千元,則市場供應量約為1萬件;若市場價格為7千元,則市場供應量約為2萬件.

(1)試確定k.b的值;

(2)市場需求量q(單位:萬件)與市場價格x近似滿足關系式:.P = q時,市場價格稱為市場平衡價格.當市場平衡價格不超過4千元時,試確定關稅稅率的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,梯形中,,過分別作,,垂足分別,已知,將梯形沿同側折起,得空間幾何體 ,如圖

1,證明:平面

2,,線段上存在一點,滿足與平面所成角的正弦值為,求的長.

查看答案和解析>>

同步練習冊答案