精英家教網 > 高中數學 > 題目詳情

【題目】設函數f(x)=ex(ax2﹣x﹣1)(a∈R).
(1)若函數f(x)在R上單調遞減,求a的取值范圍
(2)當a>0時,求f(|sinx|)的最小值.

【答案】
(1)解:∵f(x)=ex(ax2﹣x﹣1),

∴f'(x)=ex(ax2﹣x﹣1)+ex(2ax﹣1)=ex[ax2+(2a﹣1)x﹣2],

①a=0時,顯然不滿足,

②當a≠0時,f'(x)≤0恒成立,

即a<0且(2a﹣1)2+4×2×a≤0,所以


(2)解:①當 ,

②當


【解析】(1)先求導,再根據導數和函數的單調性的關系,即可求出a的范圍.(2)討論a的取值范圍,再根據導數求函數的單調性,從而可求出函數的最小值.
【考點精析】利用利用導數研究函數的單調性對題目進行判斷即可得到答案,需要熟知一般的,函數的單調性與其導數的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數在這個區(qū)間單調遞增;(2)如果,那么函數在這個區(qū)間單調遞減.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某家庭進行理財投資根據長期收益率市場預測,投資類產品的收益與投資額成正比,投資類產品的收益與投資額的算術平方根成正比已知投資1萬元時兩類產品的收益分別為0125萬元和05萬元

1分別寫出兩類產品的收益與投資額的函數關系;

2該家庭有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設奇函數上是增函數,且,則不等式的解集為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在一次趣味校園運動會的頒獎儀式上,高一、高二、高三代表隊人數分別為120人、120人、n人.為了活躍氣氛,大會組委會在頒獎過程中穿插抽獎活動,并用分層抽樣的方法從三個代表隊中共抽取20人在前排就座,其中高二代表隊有6人.

(1)求n的值;

(2)把在前排就座的高二代表隊6人分別記為a,b,c,d,e,f,現隨機從中抽取2人上臺抽獎.求a和b至少有一人上臺抽獎的概率;

(3)抽獎活動的規(guī)則是:代表通過操作按鍵使電腦自動產生兩個[0,1]之間的均勻隨機數x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示中獎,則該代表中獎;若電腦顯示謝謝,則不中獎,求該代表中獎的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】袋中裝有紅球3個、白球2個、黑球1個,從中任取2個,則互斥而不對立的兩個事件是( )

A. 至少有一個白球;至少有一個紅球 B. 至少有一個白球;紅、黑球各一個

C. 恰有一個白球;一個白球一個黑球 D. 至少有一個白球;都是白球

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知是定義在R上的奇函數,當時,.

(1)的值;

(2)的解析式;

(3)解關于的不等式,結果用集合或區(qū)間表示.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在R上的函數滿足,且當時,,對任意R,均有

(1)求證:;

(2)求證:對任意R,恒有;

(3)求證:是R上的增函數;

(4)若,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,其中是實數.

(l)若 ,求函數的單調區(qū)間;

(2)當時,若為函數圖像上一點,且直線相切于點,其中為坐標原點,求的值;

(3) 設定義在上的函數在點處的切線方程為在定義域內恒成立,則稱函數具有某種性質,簡稱“函數”.當時,試問函數是否為“函數”?若是,請求出此時切點的橫坐標;若不是,清說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】直三棱柱ABC﹣A1B1C1的底面是等腰直角三角形,AB=AC=2,四棱錐C﹣ABB1A1的體積等于4.

(1)求AA1的值;
(2)求C1到平面A1B1C的距離.

查看答案和解析>>

同步練習冊答案