13.已知命題p:(x+1)(2-x)≥0,命題q:x2-2x-(a2-1)≤0(a>0),若¬p是¬q的必要不充分條件,則a的取值范圍為[2,+∞).

分析 分別求出關(guān)于p,q成立的x的范圍,根據(jù)¬p是¬q的必要不充分條件,得到關(guān)于a的不等式組,解出即可.

解答 解:關(guān)于命題p:(x+1)(2-x)≥0
解得:-1≤x≤2,
關(guān)于命題q:x2-2x-(a2-1)≤0(a>0),
解得:1-a≤x≤1+a,
若¬p是¬q的必要不充分條件,
則q是p的必要不充分條件,
$\left\{\begin{array}{l}{1-a≤-1}\\{1+a≥2}\end{array}\right.$,解得:a≥2,
故答案為:[2,+∞).

點(diǎn)評 本題考查了充分必要條件,考查集合的包含思想,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=$\sqrt{{x}^{2}-x-2}$的單調(diào)遞增區(qū)間為( 。
A.[2,+∞)B.(-∞,$\frac{1}{2}$]C.[$\frac{1}{2}$,+∞)D.(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.用min{a,b}表示a,b兩個(gè)數(shù)中的最小值,設(shè)f(x)=min{x+2,10-x},則當(dāng)x=4時(shí),f(x)的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)$f(x)=\frac{1}{x}-{log_2}\frac{2+x}{2-x}$.
(1)求f(x)的定義域;
(2)判斷并證明f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列命題中的假命題是( 。
A.?x∈R,ex>0B.?x∈R,lnx=0C.?x∈R,(x-1)2≥0D.?x∈R,x2+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=x2-2(a-1)x+2在區(qū)間(-∞,6]上為減函數(shù),則實(shí)數(shù)a的取值范圍為[7,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.log59•log225•log34=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,已知圓的面積為3140平方厘米,求內(nèi)接正方形ABCD的面積(π取3.14).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知tanα=3,求下列各式的值:
(1)$\frac{4sin(α-2π)-cos(4π+α)}{3sin(α-2π)-5cos(α-6π)}$.
(2)$\frac{si{n}^{2}α-2sinαcosα-co{s}^{2}α}{4co{s}^{2}α-3si{n}^{2}α}$.

查看答案和解析>>

同步練習(xí)冊答案