【題目】新冠疫情發(fā)生后,酒精使用量大增,某生產(chǎn)企業(yè)調(diào)整設(shè)備,全力生產(chǎn)兩種不同濃度的酒精,按照計(jì)劃可知在一個(gè)月內(nèi),酒精日產(chǎn)量(單位:噸)與時(shí)間n()成等差數(shù)列,且,.又知酒精日產(chǎn)量所占比重與時(shí)間n成等比數(shù)列,酒精日產(chǎn)量所占比重與時(shí)間n的關(guān)系如下表():

酒精日產(chǎn)量所占比重

……

時(shí)間n

1

2

3

……

1)求,的通項(xiàng)公式;

2)若,求前n酒精的總生產(chǎn)量(單位:噸,).

【答案】1();(2噸().

【解析】

1)由等差、等比數(shù)列的定義和通項(xiàng)公式可求得;

2)運(yùn)用錯(cuò)位相減法可得答案.

1)由,得,所以,所以.

因?yàn)?/span>,.所以().

2)由題意知,第n酒精的生產(chǎn)量為

①,

②,

由①②得:

所以,

綜上,前n酒精的總生產(chǎn)量噸().

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形中,,平面平面,四邊形是菱形,.

(1)求證:;

(2)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E是以AB為直徑的半圓O上異于A、B的點(diǎn),矩形ABCD所在的平面垂直于半圓O所在的平面,且AB=2AD=2.

1)求證:

2)若異面直線(xiàn)AEDC所成的角為,求平面DCE與平面AEB所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小趙和小王約定在早上之間到某公交站搭乘公交車(chē)去上學(xué),已知在這段時(shí)間內(nèi),共有班公交車(chē)到達(dá)該站,到站的時(shí)間分別為,,如果他們約定見(jiàn)車(chē)就搭乘,則小趙和小王恰好能搭乘同一班公交車(chē)去上學(xué)的概率為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列和等比數(shù)列的各項(xiàng)均為整數(shù),它們的前項(xiàng)和分別為,且.

1)求數(shù)列,的通項(xiàng)公式;

2)求;

3)是否存在正整數(shù),使得恰好是數(shù)列中的項(xiàng)?若存在,求出所有滿(mǎn)足條件的的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐中,底面ABCD是梯形,且,,,,,,AD的中點(diǎn)為E,則四棱錐外接球的表面積為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將某公司200天的日銷(xiāo)售收入(單位:萬(wàn)元)統(tǒng)計(jì)如下表(1)所示,

日銷(xiāo)售收入

頻數(shù)

12

28

36

54

50

20

頻率

表(1)

1)完成上述頻率分布表,并估計(jì)公司這200天的日均銷(xiāo)售收入(同一組中的數(shù)據(jù)用該組所在區(qū)間的中點(diǎn)值代表);

2)已知該公司2020年第一、二季度的日銷(xiāo)售收入如下表(2)所示,第三季度的日銷(xiāo)售收入及其頻率可用表(1)中的數(shù)據(jù)近似代替,且在2020年,當(dāng)公司日銷(xiāo)售收入為時(shí),員工的日績(jī)效為100元,當(dāng)公司日銷(xiāo)售收入為時(shí),員工的日績(jī)效為200元,當(dāng)公司日銷(xiāo)售收入為時(shí),員工的日績(jī)效為300.以頻率估計(jì)概率.

①若在第三季度某員工的工作日中隨機(jī)抽取2天,記該員工2天的績(jī)效之和為,求的分布列以及數(shù)學(xué)期望;

②若每個(gè)員工每個(gè)季度的工作日為50天,估計(jì)2020年前三個(gè)季度每個(gè)員工獲得的績(jī)效的總額.

日銷(xiāo)售收入

頻率

0.2

0.3

0.2

0.1

0.1

0.1

表(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,四點(diǎn),,中恰有三個(gè)點(diǎn)在橢圓C上,左、右焦點(diǎn)分別為F1、F2

1)求橢圓C的方程;

2)過(guò)左焦點(diǎn)F1且不平行坐標(biāo)軸的直線(xiàn)l交橢圓于P、Q兩點(diǎn),若PQ的中點(diǎn)為N,O為原點(diǎn),直線(xiàn)ON交直線(xiàn)x=﹣3于點(diǎn)M,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知O為原點(diǎn),拋物線(xiàn)的準(zhǔn)線(xiàn)與y軸的交點(diǎn)為H,P為拋物線(xiàn)C上橫坐標(biāo)為4的點(diǎn),已知點(diǎn)P到準(zhǔn)線(xiàn)的距離為5.

1)求C的方程;

2)過(guò)C的焦點(diǎn)F作直線(xiàn)l與拋物線(xiàn)C交于A,B兩點(diǎn),若以AH為直徑的圓過(guò)B,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案