【題目】小趙和小王約定在早上至之間到某公交站搭乘公交車去上學,已知在這段時間內,共有班公交車到達該站,到站的時間分別為,,如果他們約定見車就搭乘,則小趙和小王恰好能搭乘同一班公交車去上學的概率為__________.
科目:高中數學 來源: 題型:
【題目】設函數是定義在上的函數,并且滿足下面三個條件:(1)對正數,都有;(2)當時,;(3);
(1)求和的值;
(2)如果不等式成立,求的取值范圍;
(3)如果存在正數,使不等式有解,求正數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某家庭進行理財投資,根據長期收益率市場預測,投資債券等穩(wěn)健型產品的收益與投資額成正比,投資股票等風險型產品的收益與投資額的算術平方根成正比.已知投資1萬元時兩類產品的收益分別為0.125萬元和0.5萬元。
(1)分別寫出兩類產品的收益與投資額的函數關系式;
(2)該家庭現有20萬元資金,全部用于理財投資,怎樣分配資金才能獲得最大收益?其最大收益為多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某群體的人均通勤時間,是指單日內該群體中成員從居住地到工作地的平均用時.某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當中()的成員自駕時,自駕群體的人均通勤時間為(單位:分鐘),而公交群體的人均通勤時間不受影響,恒為分鐘,試根據上述分析結果回答下列問題:
(1)當在什么范圍內時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?
(2)求該地上班族的人均通勤時間的表達式;討論的單調性,并說明其實際意義.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某地區(qū)2008年至2014年中,每年的居民人均純收入y(單位:千元)的數據如下表:
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
年份代號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入 | 2.7 | 3.6 | 3.3 | 4.6 | 5.4 | 5.7 | 6.2 |
對變量與進行相關性檢驗,得知與 之間具有線性相關關系.
(1)求關于的線性回歸方程;
(2)預測該地區(qū)2017年的居民人均純收入.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線經過點,其傾斜角為,以原點為極點,以軸為非負半軸為極軸,與坐標系取相同的長度單位,建立極坐標系.設曲線的極坐標方程為.
(1)若直線與曲線有公共點,求傾斜角的取值范圍;
(2)設為曲線上任意一點,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的圖形中,每個三角形上各有一個數字,若六個三角形上的數字之和為,則稱該圖形是“和諧圖形”.已知其中四個三角形上的數字之和為,現從、、、、中任取兩個數字標在另外兩個三角形上,則恰好使該圖形為“和諧圖形”的概率為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com