13.已知A={x|2x>1},B={x|-1<x<1}.
(1)求A∪B及(∁RA)∩B;
(2)若集合C={x|x<a},滿足B∪C=C,求實數(shù)a的取值范圍.

分析 (1)化簡集合A,根據(jù)并集的定義寫出A∪B,再寫出CRA與(CRA)∩B;
(2)根據(jù)B∪C=C得出B⊆C,從而得出a的取值范圍.

解答 解:(1)集合A={x|2x>1}={x|x>0},…(2分)
又B={x|-1<x<2},
∴A∪B={x|x>-1};…(4分)
∵A={x|x>0},
∴CRA={x|x≤0};…(5分)
∴(CRA)∩B={x|-1<x≤0};…(7分)
(2)∵B={x|-1<x<2},
C={x|x<a},且B∪C=C,
∴B⊆C,
∴a≥2,
即實數(shù)a的取值范圍是a≥2…12分

點評 本題考查了集合的化簡與運算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖所示的偽代碼,如果輸入x的值為5,則輸出的結(jié)果y為23.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知點P(-2,$\frac{\sqrt{14}}{2}$)在橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上,過點P作圓O:x2+y2=2的切線,切點為A,B,若直線AB恰好過橢圓C的左焦點F,則a2+b2的值是( 。
A.13B.14C.15D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)$f(x)=1-x+{log_2}\frac{1-x}{1+x}$,則$f({\frac{1}{2}})+f({-\frac{1}{2}})$的值為( 。
A.0B.-2C.2D.$2{log_2}\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.小明騎車上學(xué),一路勻速行駛,只是在途中遇到了一次交通堵塞,耽擱了一些時間.與以上事物吻合得最好的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=2\sqrt{3}sinxcosx+{sin^2}x-{cos^2}x$,
(1)求f(x)的值域;
(2)說明怎樣由y=sinx的圖象得到f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在直角坐標(biāo)系xOy中,終邊在坐標(biāo)軸上的角α的集合是{α|α=$\frac{nπ}{2}$,n∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若關(guān)于x的方程4x-(a+3)2x+1=0有實數(shù)解,則實數(shù)a的取值范圍是[-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知直線l:y=x-1,雙曲線c1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,拋物線c2:y2=2x,直線l與c1相交于A,B兩點,與c2交于C,D兩點,若線段AB與CD的中點相同,則雙曲線c1的離心率為( 。
A.$\frac{\sqrt{6}}{2}$B.$\sqrt{2}$C.$\frac{\sqrt{15}}{3}$D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案