2.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-b{x^2}+2x-a$,x=2是f(x)的一個(gè)極值點(diǎn).
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)a>0時(shí),求方程f(x)=0的解的個(gè)數(shù).

分析 (I)利用f′(2)=0即可得出b,再解出f′(x)>0即可得出其單調(diào)遞增區(qū)間;
(Ⅱ)問題轉(zhuǎn)化為求$\frac{1}{3}$x3-$\frac{3}{2}$x2+2x=a的解的個(gè)數(shù),令g(x)=$\frac{1}{3}$x3-$\frac{3}{2}$x2+2x,求出g(x)的極大值和極小值,通過討論a的范圍求出方程的解的個(gè)數(shù)即可.

解答 解:(I)f′(x)=x2-2bx+2,
∵x=2是f(x)的一個(gè)極值點(diǎn),∴f′(2)=22--4b+2=0,解得b=$\frac{3}{2}$,
∴f′(x)=x2-3x+2,令f′(x)>0,解得x<1或x>2.
∴函數(shù)f(x)的單調(diào)遞增區(qū)間是(-∞,1),(2,+∞);
(Ⅱ)求方程f(x)=0的解的個(gè)數(shù)即求$\frac{1}{3}$x3-$\frac{3}{2}$x2+2x=a的解的個(gè)數(shù),
令g(x)=$\frac{1}{3}$x3-$\frac{3}{2}$x2+2x,g′(x)=x2-3x+2=(x-1)(x-2),
令g′(x)>0,解得:x>2或x<1,令g′(x)<0,解得:1<x<2,
∴g(x)在(-∞,1),(2,+∞)遞增,在(1,2)遞減,
∴g(x)極大值=g(1)=$\frac{5}{6}$,g(x)極小值=g(2)=$\frac{2}{3}$,
a>$\frac{5}{6}$或0<a<$\frac{2}{3}$時(shí),方程1個(gè)解,
a=$\frac{5}{6}$或$\frac{2}{3}$時(shí),方程2個(gè)解,
$\frac{2}{3}$<a<$\frac{5}{6}$時(shí),方程3個(gè)解.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用,方程根的情況,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=x+2cosx在(0,2π)上的單調(diào)遞減區(qū)間為$(\frac{π}{6},\frac{5π}{6})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x3+kx2-x+m,k,m∈R
(Ⅰ)若k=f′($\frac{2}{3}$),求f(x)的單調(diào)區(qū)間
(Ⅱ)若函數(shù)f(x)在(1,2)上單調(diào)遞增,求k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)g(x)=aln x,f(x)=x3+x2+bx.
(1)若f(x)在區(qū)間[1,2]上不是單調(diào)函數(shù),求實(shí)數(shù)b的范圍;
(2)若對(duì)任意x∈[1,e],都有g(shù)(x)≥-x2+(a+2)x恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$f(x)=\frac{{{x^2}-ax+b}}{e^x}$經(jīng)過點(diǎn)(0,3),且在該點(diǎn)處得切線與x軸平行
(1)求a,b的值;
(2)若x∈(t,t+1),其中t>-2,討論函數(shù)y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.近年來我國電子商務(wù)行業(yè)迎來篷布發(fā)展的新機(jī)遇,2015年雙11期間,某購物平臺(tái)的銷售業(yè)績高達(dá)918億人民幣.與此同時(shí),相關(guān)管理部門也推出了針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系.現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功的交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為$\frac{3}{5}$,對(duì)服務(wù)的好評(píng)率為$\frac{3}{4}$,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為80次.
(1)是否可以在犯錯(cuò)誤概率不超過0.1%的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?
(2)若針對(duì)商品的好評(píng)率,采用分層抽樣的方式從這200次交易中取出5次交易,并從中選擇兩次交易進(jìn)行客戶回訪,求只有一次好評(píng)的概率.
 P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.“m=1”是“直線mx+(m+1)y-1=0和直線2x-my+1=0垂直”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.一批產(chǎn)品有一級(jí)品100個(gè),二級(jí)品60個(gè),三級(jí)品40個(gè),分別采用系統(tǒng)抽樣和分層抽樣,從這批產(chǎn)品中抽取一個(gè)容量為20的樣本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{x}{a}$-lnx(a≠0,a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在兩個(gè)不相等的正數(shù)x1,x2,滿足f(x1)=f(x2),求證:x1+x2>2a.

查看答案和解析>>

同步練習(xí)冊答案