【題目】如圖所示,已知橢圓的焦距為 ,直線被橢圓 截得的弦長為 .

(1)求橢圓 的方程;

(2)設(shè)點是橢圓 上的動點,過原點引兩條射線與圓分別相切,且的斜率存在. ①試問 是否為定值?若是,求出該定值,若不是,說明理由;

②若射線與橢圓 分別交于點,求的最大值.

【答案】(1);(2)①,②.

【解析】試題分析:(1)利用題意求出點的坐標,將點的坐標代入橢圓方程,進而求出橢圓的標準方程;(2)①設(shè)出射線方程,利用直線和圓相切得到有關(guān)關(guān)系式,再結(jié)合點在橢圓上進行證明;②聯(lián)立直線和橢圓方程,得到相關(guān)點的坐標,再利用基本不等式求其最值.

試題解析: (1) 依題意得,設(shè)直線 與橢圓 相交于 兩點,則,不妨設(shè),又,解得,所以橢圓 的方程為.

(2) ①設(shè)射線方程為,則,兩邊平方整理得 .

②聯(lián)立,消去 ,同理,

,當且僅當時,取等號.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場計劃種植某種新作物,為此對這種作物的兩個品種分別稱為品種甲和品種乙進行田間試驗選取兩大塊地,每大塊地分成小塊地,在總共小塊地中,隨機選小塊地種植品種甲,另外小塊地種植品種乙

1假設(shè),求第一大塊地都種植品種甲的概率;

2試驗時每大塊地分成小塊,即,試驗結(jié)束后得到品種甲和品種乙在各小塊地上的每公頃產(chǎn)量單位:kg/hm2如下表:

分別求品種甲和品種乙的每公頃產(chǎn)量的樣本平均數(shù)和樣本方差;根據(jù)試驗結(jié)果,你認為應(yīng)該種植哪一品種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列的各項均為正數(shù),且, .

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)設(shè),求數(shù)列的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)已知函數(shù)f(x)=|lnx|,正數(shù)a,b滿足a<b,且f(a)=f(b),若f(x)在區(qū)間[a2 , b]上的最大值為2,則2a+b=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 ,設(shè)直線與橢圓交于不同兩點,且.若點滿足,則=______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓方程為,雙曲線的兩條漸近線分別為, ,過橢圓的右焦點作直線,使,又交于點,設(shè)直線與橢圓的兩個交點由上至下依次為, . 

(1)若所成的銳角為,且雙曲線的焦距為4,求橢圓的方程;

(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】孝感市及周邊地區(qū)的市民游玩又添新去處啦!孝感熙鳳水鄉(xiāng)旅游度假區(qū)于2017年10月1日正式對外開放.據(jù)統(tǒng)計,從2017年10月1日到10月7日參觀孝感市熙鳳水鄉(xiāng)旅游度假區(qū)的人數(shù)如表所示:

日期

1日

2日

3日

4日

5日

6日

7日

人數(shù)(萬)

11

13

8

9

7

8

10

(1)把這7天的參觀人數(shù)看成一個總體,求該總體的眾數(shù)和平均數(shù)(精確到0.1);

(2)用簡單隨機抽樣方法從10月1日到10月4日中抽取2天,它們的參觀人數(shù)組成一個樣本,求該樣本平均數(shù)與總體平均數(shù)之差的絕對值不超過1萬的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率是,且過點.直線與橢圓相交于兩點.

(Ⅰ)求橢圓的方程;

(Ⅱ)求的面積的最大值;

(Ⅲ)設(shè)直線, 分別與軸交于點, .判斷, 大小關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,丨φ丨< )的部分圖象如圖所示,則f(x)的解析式為(
A.f(x)=2sin(x+
B.f(x)=2sin(2x+
C.f(x)=2sin(2x﹣
D.f(x)=2sin(4x﹣

查看答案和解析>>

同步練習(xí)冊答案